Skip to main content
Advanced Search

Filters: Tags: Sea-Level Rise and Coasts (X)

421 results (96ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Ecosystems such as coral reefs and mangroves provide an effective first line of defense against coastal hazards and represent a promising nature-based solution to adapt to sea-level rise. In many areas, coral reefs cause waves to break and lose energy, allowing for sediment to accumulate on the inshore portion of reef flats (i.e. the shallowest, flattest part of a reef) and mangroves to establish. Mangroves cause further attenuation (i.e. energy loss) waves and storm surge as water moves through roots and trunks of the trees. Together, these ecosystems provide valuable protection from coastal flooding, but is unclear how this protection may be affected by sea-level rise. An assessment of future sea-level rise vulnerability...
thumbnail
Agriculture and agroforestry (tree cultivation) are important activities for the Marshall Islands and other small islands to ensure food security and human health. The Marshallese have a long tradition of interplanting food-producing trees such as coconuts, breadfruit, and pandanus with bananas and root and vegetable crops. Locally grown food crops support community self-sufficiency, promote good nutrition, and can also serve as windbreaks and stabilize shorelines to lessen storm damage and erosion. However, climate change is posing serious challenges for growers, as they struggle to adapt to climate impacts including saltwater intrusion, changing precipitation and temperature patterns, and the spread of invasive...
thumbnail
Water is a key ecosystem service that provides life to vegetation, animals, and human communities. The distribution and flow of water on a landscape influences many ecological functions, such as the distribution and health of vegetation and soil development and function. However, the future of many important water resources remains uncertain. Reduced snowfall and snowpack, earlier spring runoff, increased winter streamflow and flooding, and decreased summer streamflow have all been identified as potential impacts to water resources due to climate change. These factors all influence the water balance in the Pacific Coastal Temperate Rainforest (PCTR). Ensuring healthy flow and availability of water resources is...
thumbnail
Loko iʻa, Hawaiian fishponds, are part of a rich history of indigenous aquaculture dating back to the 1400s. These unique ecosystems serve as key models of food sustainability across Hawaiʻi and the Pacific region. Hawaiʻi, among the most geographically isolated regions throughout the world, currently faces many challenges including environmental uncertainties, increasing urbanization, a growing population, and a dangerously high dependence on imports. Coupled with climate change, these challenges highlight the urgent need to develop a more sustainable and resilient Hawaiʻi. The overall goal of this project is to apply cutting-edge science tools and approaches to help kia‘i loko, fishpond stewards, enhance the...
thumbnail
The fast pace of change in coastal zones, the trillions of dollars of investment in human communities in coastal areas, and the myriad of ecosystem services natural coastal environments provide makes managing climate-related risks along coasts a massive challenge for all of the U.S. coastal states and territories. Answering questions about both the costs and the benefits of alternative adaptation strategies in the near term is critical to taxpayers, decision-makers, and to the biodiversity of the planet. There is significant public and private interest in using ecosystem based adaptation approaches to conserve critical significant ecosystems in coastal watersheds, estuaries and intertidal zones and to protect man-made...
thumbnail
This data set includes bi-monthly data on submerged aquatic vegetation species composition, percent cover, above and below ground biomass and environmental data at coastal sites across the fresh to saline gradient in Barataria Bay, LA. This project was co-funded by the South Central Climate Adaptation Science Center and the Gulf Coast Prairie and the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperatives. An alternate reference to this product can be found here.
thumbnail
Climate change is causing species to shift their phenology, or the timing of recurring life events such as migration and spawning, in variable and complex ways. This can potentially result in mismatches or asynchronies in food and habitat resources that negatively impact individual fitness, population dynamics, and ecosystem function. Numerous studies have evaluated phenological shifts in terrestrial species, particularly birds and plants, yet far fewer evaluations have been conducted for marine animals. This project sought to improve our understanding of shifts in the timing of seasonal migration, spawning or breeding, and biological development (i.e. life stages present, dominant) of coastal fishes and migratory...
Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta) tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ~250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles...
Use of existing marine protected areas (MPAs) by far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on MPA use by marine turtles in the Gulf of Mexico, we used satellite transmitters in 2010 and 2011 to track movements of 11 adult female breeding green turtles (Chelonia mydas) tagged in Dry Tortugas National Park (DRTO), in the Gulf of Mexico, south Florida, USA. Throughout the study period, turtles emerged every 9–18 days to nest. During the intervals between nesting episodes (i.e., inter-nesting periods), the turtles consistently used a common core-area within the DRTO boundary, determined using individual 50% kernel-density estimates (KDEs). We mapped the...
thumbnail
Winter climate change has the potential to have a large impact on coastal wetlands in the southeastern U.S. Warmer winter temperatures and reductions in the intensity of freeze events would likely lead to mangrove forest range expansion and salt marsh displacement in parts of the U.S. Gulf of Mexico and Atlantic coast. The objective of this research was to better understand some of the ecological implications of mangrove forest migration and salt marsh displacement. The potential ecological effects of mangrove migration are diverse ranging from important biotic impacts (e.g., coastal fisheries, land bird migration; colonial nesting wading birds) to ecosystem stability (e.g., response to sea level rise and drought;...
The goal of barrier island restoration in the northern Gulf of Mexico is to restore barrier island morphology using sediment to support the functions and habitats the islands provide. Barrier island restoration typically involves placement of sediment either directly on the island footprint or within the littoral zone for system transport and distribution. The re-engineering of barrier islands presents numerous challenges and uncertainties associated with climate change induced hurricanes/storms and other dynamic components of the system such as sediment availability and erosional trends. The goal of this study was to use a collaborative SDM approach to develop two Bayesian decision network models (DMs) for restoration...
Abstract (from SpringerLink): The resilience of socio-ecological systems to sea level rise, storms and flooding can be enhanced when coastal habitats are used as natural infrastructure. Grey infrastructure has long been used for coastal flood protection but can lead to unintended negative impacts. Natural infrastructure often provides similar services as well as added benefits that support short- and long-term biological, cultural, social, and economic goals. While natural infrastructure is becoming more widespread in practice, it often represents a relatively small fraction within portfolios of coastal risk-reducing strategies compared to more traditional grey infrastructure. This study provides a comprehensive...
thumbnail
The Sea Surface Temperature (SST) data of the nearshore region of the North Pacific show temperature ranges in degrees C using points whose locations correspond to the centroids of AVHRR Pathfinder version 5 monthly, global, 4 km data set (PFSST V50). The pathfinder rasters are available from the Physical Oceanography Distributed Active Archive Center (PO.DAAC), hosted by NASA JPL. The data points in this dataset lie within a 20 km buffer from the GSHHS (Global Self-consistent, Hierarchical, High-resolution Shoreline) coastline. The GSHHS vector data are available from the National Geophysical Data Center (NGDC). Furthermore, each point in the SST dataset is categorized by the ecoregion in which it is located. This...
The “Sea‐Level Affecting Marshes Model” (SLAMM) is a moderate resolution model used to predict the effects of sea level rise on marsh habitats (Craft et al. 2009). SLAMM has been used extensively on both the west coast (e.g., Glick et al., 2007) and east coast (e.g., Geselbracht et al., 2011) of the United States to evaluate potential changes in the distribution and extent of tidal marsh habitats. However, a limitation of the current version of SLAMM, (Version 6.2) is that it lacks the ability to model distribution changes in seagrass habitat resulting from sea level rise. Because of the ecological importance of SAV habitats, the US Environmental Protection Agency, US Geological Survey, and US Department of Agriculture...
This website provides access to a broad range of information related to seasonal climate variability in the Republic of the Marshall Isalnds. It includes a quick-look at current and future conditions for a range of climate indicators, direct access to more detailed outlook-related information from stations and statellites, and products that place this information in a histrorical context. It also includes links to addtional sources of information.
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...
thumbnail
We used WARMER, a 1-D cohort model of wetland accretion (Swanson et al., 2014), which is based on Callaway et al. (1996), to examine the effects of three SLR projections on future habitat composition at each study site. Each cohort in the model represents the total organic and inorganic matter added to the soil column each year. WARMER calculates annual elevation changes relative to MSL based on projected changes in relative sea level, subsidence, inorganic sediment accumulation, aboveground and belowground organic matter inputs, soil compaction, and organic matter decomposition for a representative marsh area. Cohort density, a function of soil mineral, organic, and water content, is calculated at each time step...


map background search result map search result map Projecting the Future Distribution and Flow of Water in Alaskan Coastal Forest Watersheds Developing an Agroforestry Dashboard for the Marshall Islands Implications of Future Shifts in Migration, Spawning, and Other Life Events of Coastal Fish and Wildlife Species Field Notes - Scanned Field Data Sheets and Field Notebook Pages for the following project - Ecological implications of mangrove forest migration in the southeastern US (2012-2013) Morro Bay, California: Tidal Marsh Digital Elevation Model Pt. Mugu, California: Tidal Marsh Digital Elevation Model SLR Projections, Bolinas, Calif., 2010-2060 SLR Projections, Pt. Mugu, Calif., 2070-2110 Submerged aquatic vegetation and environmental data along a salinity gradient in Barataria Bay, Louisiana (2015) Evaluating Ecosystem-Based Adaptation Options for Coastal Resilience The Impact of Sea-Level Rise on Coral Reef and Mangrove Interactions and the Resulting Coastal Flooding Hazards Impacts of Climate Change on Water Quality and Fish Recruitment in Native Hawaiian Fishponds SLR Projections, Pt. Mugu, Calif., 2070-2110 Pt. Mugu, California: Tidal Marsh Digital Elevation Model SLR Projections, Bolinas, Calif., 2010-2060 Morro Bay, California: Tidal Marsh Digital Elevation Model Impacts of Climate Change on Water Quality and Fish Recruitment in Native Hawaiian Fishponds The Impact of Sea-Level Rise on Coral Reef and Mangrove Interactions and the Resulting Coastal Flooding Hazards Field Notes - Scanned Field Data Sheets and Field Notebook Pages for the following project - Ecological implications of mangrove forest migration in the southeastern US (2012-2013) Submerged aquatic vegetation and environmental data along a salinity gradient in Barataria Bay, Louisiana (2015) Implications of Future Shifts in Migration, Spawning, and Other Life Events of Coastal Fish and Wildlife Species Developing an Agroforestry Dashboard for the Marshall Islands Projecting the Future Distribution and Flow of Water in Alaskan Coastal Forest Watersheds Evaluating Ecosystem-Based Adaptation Options for Coastal Resilience