Skip to main content
Advanced Search

Filters: Tags: Sediment Transport (X) > Extensions: NetCDF OPeNDAP Service (X)

16 results (33ms)   

View Results as: JSON ATOM CSV
thumbnail
We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2010) model to simulate ocean circulation, waves, and sediment transport in Barnegat Bay, New Jersey, during Hurricane Sandy. The simulation period was from October 27 to November 4, 2012. Initial conditions for the salinity and temperature fields in the domain were acquired from a 7-month simulation of the same domain (Defne and Ganju, 2018). We used a 2012 digital terrain model (Andrews and others, 2015) to prescribe the prestorm bathymetry. Wetting and drying was enabled, wave-current interaction was modeled with a boundary-layer formulation accounting for the apparent roughness of waves, and the vortex force formulation...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments > Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
The development of Submerged Aquatic Vegetation (SAV) growth model within the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model leads to a change in SAV biomass. The SAV biomass is computed from temperature, nutrient loading and light predictions obtained from coupled hydrodynamics (temperature), bio-geochemistry (nutrients) and bio-optical (light) models. In exchange, the growth of SAV sequesters or contributes nutrients from the water column and sediment layers. The presence of SAV modulates current and wave attenuation and consequently affects modelled sediment transport. The model of West Falmouth Harbor in Massachusetts, USA was simulated to study the seagrass growth/dieback pattern in a hypothetical...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
Transport of material in an estuary is important for water quality and hazards concern. We studied these processes in the Hudson River Estuary, located along the northeast coast of the U.S. using the COAWST numerical modeling system. A skill assessment of the COAWST model for the 3-D salinity structure of the estuary has been successfully studied in the past, and the present research extended that understanding to look at both physical and numerical mixing. The model grid extends from the south at the Battery, NY to the north in Troy, NY. The simulation is performed from March 25 to July 11, 2005 (111 days). For more information see: https://doi.org/10.5066/P95E8LAS.
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2010) model to simulate ocean circulation, waves, and sediment transport in Barnegat Bay, New Jersey, during Hurricane Sandy. The simulation period was from October 27 to November 4, 2012. Initial conditions for the salinity and temperature fields in the domain were acquired from a 7-month simulation of the same domain (Defne and Ganju, 2018). We used a 2012 digital terrain model (Andrews and others, 2015) to prescribe the prestorm bathymetry. Wetting and drying was enabled, wave-current interaction was modeled with a boundary-layer formulation accounting for the apparent roughness of waves, and the vortex force formulation...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2019; Warner and others, 2010) model was used to simulate ocean circulation, waves, and sediment transport in Cape Cod Bay, MA. Larger scale simulations of the US East Coast (Warner and Kalra, 2022) were used to drive numerical grids covering the Gulf of Maine (~1000m resolution) with a two-way nested downscaled region into Cape Cod Bay (~250m resolution). Results were analyzed to investigate bay-scale dynamics of net transport, seafloor elevation changes, and net sediment fluxes. Those results were further used to drive a coastal scale grid that stretched along ~17km of the coast from the Cape Cod Canal to Sandy Neck Beach. This nearshore...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2010) model to simulate ocean circulation, waves, and sediment transport in Barnegat Bay, New Jersey, during Hurricane Sandy. The simulation period was from October 27 to November 4, 2012. Initial conditions for the salinity and temperature fields in the domain were acquired from a 7-month simulation of the same domain (Defne and Ganju, 2018). We used a 2012 digital terrain model (Andrews and others, 2015) to prescribe the prestorm bathymetry. Wetting and drying was enabled, wave-current interaction was modeled with a boundary-layer formulation accounting for the apparent roughness of waves, and the vortex force formulation...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments > Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
The development of Submerged Aquatic Vegetation (SAV) growth model within the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model leads to a change in SAV biomass. The SAV biomass is computed from temperature, nutrient loading and light predictions obtained from coupled hydrodynamics (temperature), bio-geochemistry (nutrients) and bio-optical (light) models. In exchange, the growth of SAV sequesters or contributes nutrients from the water column and sediment layers. The presence of SAV modulates current and wave attenuation and consequently affects modelled sediment transport. The SAV growth model is employed to simulate the model of West Falmouth Harbor in Massachusetts, USA to test the ability of the...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2010) model to simulate ocean circulation, waves, and sediment transport in Barnegat Bay, New Jersey, during Hurricane Sandy. The simulation period was from October 27 to November 4, 2012. Initial conditions for the salinity and temperature fields in the domain were acquired from a 7-month simulation of the same domain (Defne and Ganju, 2018). We used a 2012 digital terrain model (Andrews and others, 2015) to prescribe the prestorm bathymetry. Wetting and drying was enabled, wave-current interaction was modeled with a boundary-layer formulation accounting for the apparent roughness of waves, and the vortex force formulation...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling framework was extended to add two key processes that affect marshes, erosion due to lateral wave thrust (LWT) and vertical accretion due to biomass productivity. The testing of the combined effects of integrating these two processes was done by modeling marsh complexes within Forsythe National Wildlife Refuge and the Barnegat Bay (BB) estuary, New Jersey, USA. The simulations were performed first for the month of May 2015 for the entire Barnegat Bay. The Barnegat Bay estuary solution was used to force the two smaller domains that encompass Reedy and Dinner Creeks and are modeled for the same time period.
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling framework was extended to add two key processes that affect marshes, erosion due to lateral wave thrust (LWT) and vertical accretion due to biomass productivity. The testing of the combined effects of integrating these two processes was done by modeling marsh complexes within Forsythe National Wildlife Refuge and the Barnegat Bay (BB) estuary, New Jersey, USA. The simulations were performed first for the month of May 2015 for the entire Barnegat Bay. The Barnegat Bay estuary solution was used to force the two smaller domains that encompass Reedy and Dinner Creeks and are modeled for the same time period.
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
The COAWST modeling system has been used to simulate ocean and wave processes along the of US East Coast and Gulf of Mexico. The grid has a horizontal resolution of approximately 5km and is resolved with 16 vertical terrain following levels. The model has been executed on a daily basis since 2010 with outputs written every hour. Data access is available through a Globus access portal here: https://app.globus.org/file-manager?origin_id=2e58c429-d1cf-4808-85a7-0d8214a4547e&origin_path=%2F References cited: Warner, J.C., Armstrong, Brandy, He, Ruoying, and Zambon, J.B., 2010, Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system: Ocean Modelling, v. 35, issue 3, p. 230-244. ...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
Water level, flow velocity, temperature, salinity, and turbidity were measured in a breach constructed in a flood-protection levee surrounding a restored former agricultural area in Port Susan, Washington, USA, near the mouth of the Stillaguamish River. Data were collected in a breach known as PSB1 at 15-minute intervals from March 21, 2014 to July 1, 2015 using a SonTek Argonaut-SW current meter, an In-Situ Aqua TROLL 200 pressure, conductivity, and temperature sensor, and an FTS DTS-12 turbidity sensor.
thumbnail
We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2010) model to simulate ocean circulation, waves, and sediment transport in Barnegat Bay, New Jersey, during Hurricane Sandy. The simulation period was from October 27 to November 4, 2012. Initial conditions for the salinity and temperature fields in the domain were acquired from a 7-month simulation of the same domain (Defne and Ganju, 2018). We used a 2012 digital terrain model (Andrews and others, 2015) to prescribe the prestorm bathymetry. Wetting and drying was enabled, wave-current interaction was modeled with a boundary-layer formulation accounting for the apparent roughness of waves, and the vortex force formulation...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
Marshes may drown if they are unable to accrete sediment at the rate of sea level rise, but predicting the rate of sediment accretion at different marshes is challenging because many processes (e.g. tidal range, wave frequency) and conditions (e.g. available sediment, vegetation density, shape of the marsh edge) impact it. The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST, Warner and others 2019; Warner and others 2010) model was used to simulate three-dimensional hydrodynamics, waves, and sediment transport on a marsh platform in an idealized domain. The computational grid was 400 (20) cells in the cross-shore (along-shore) directions with 10 vertical sigma layers, and a cross-shore horizontal resolution...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: Earth Science > Oceans > Coastal Processes > Estuaries, Earth Science > Oceans > Coastal Processes > Marshes, Earth Science > Oceans > Coastal Processes > Sediment Transport, Earth Science > Oceans > Coastal Processes > Sedimentation, Hydrology, All tags...
The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2019; Warner and others, 2010) model was used to simulate ocean circulation, waves, and sediment transport in Cape Cod Bay, MA. Larger scale simulations of the US East Coast (Warner and Kalra, 2022) were used to drive numerical grids covering the Gulf of Maine (~1000m resolution) with a two-way nested downscaled region into Cape Cod Bay (~250m resolution). Results were analyzed to investigate bay-scale dynamics of net transport, seafloor elevation changes, and net sediment fluxes. Those results were further used to drive a coastal scale grid that stretched along ~17km of the coast from the Cape Cod Canal to Sandy Neck Beach. This nearshore...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling framework was extended to add two key processes that affect marshes, erosion due to lateral wave thrust (LWT) and vertical accretion due to biomass productivity. The testing of the combined effects of integrating these two processes was done by modeling marsh complexes within Forsythe National Wildlife Refuge and the Barnegat Bay (BB) estuary, New Jersey, USA. The simulations were performed first for the month of May 2015 for the entire Barnegat Bay. The Barnegat Bay estuary solution was used to force the two smaller domains that encompass Reedy and Dinner Creeks and are modeled for the same time period.
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...


    map background search result map search result map Numerical model of salinity transport and mixing in the Hudson River Estuary USGS Barnegat Bay hydrodynamic model for Hurricane Sandy (Storm) USGS Barnegat Bay storm filtered hydrodynamic model for Hurricane Sandy (nonStorm) USGS Barnegat Bay hydrodynamic model for Hurricane Sandy without swell (noSwell) USGS Barnegat Bay hydrodynamic model for Hurricane Sandy without swell and waves (noSW) USGS Barnegat Bay hydrodynamic model for Hurricane Sandy without swell, waves and wind (noSWW) Numerical model of Submerged Aquatic Vegetation (SAV) growth dynamics in West Falmouth Harbor with nitrate loading Numerical model of Submerged Aquatic Vegetation (SAV) growth dynamics in West Falmouth Harbor without nitrate loading Oceanographic time-series measurements collected in the Stillaguamish River Delta, Port Susan, Washington, USA from March 2014 to July 2015 COAWST model of Barnegat Bay creeks to demonstrate marsh dynamics Collection of COAWST model forecast for the US East Coast and Gulf of Mexico USGS-CMG-COAWST Model: Reedy Creek Simulations May 2015 USGS-CMG-COAWST Model: Dinner Creek Simulations May 2015 U.S. Geological Survey simulations of hydrodynamics and morphodynamics in Cape Cod Bay, MA: Cape Cod Bay Jan - April 2021 U.S. Geological Survey simulations of hydrodynamics and morphodynamics in Cape Cod Bay, MA: Sandwich Jan - April 2021 Idealized COAWST model cases for testing sensitivity of sediment transport and marsh accretion to vegetation, wave, and sediment parameters Oceanographic time-series measurements collected in the Stillaguamish River Delta, Port Susan, Washington, USA from March 2014 to July 2015 Numerical model of Submerged Aquatic Vegetation (SAV) growth dynamics in West Falmouth Harbor with nitrate loading Numerical model of Submerged Aquatic Vegetation (SAV) growth dynamics in West Falmouth Harbor without nitrate loading USGS-CMG-COAWST Model: Reedy Creek Simulations May 2015 Idealized COAWST model cases for testing sensitivity of sediment transport and marsh accretion to vegetation, wave, and sediment parameters USGS-CMG-COAWST Model: Dinner Creek Simulations May 2015 USGS Barnegat Bay hydrodynamic model for Hurricane Sandy without swell (noSwell) USGS Barnegat Bay hydrodynamic model for Hurricane Sandy (Storm) USGS Barnegat Bay storm filtered hydrodynamic model for Hurricane Sandy (nonStorm) USGS Barnegat Bay hydrodynamic model for Hurricane Sandy without swell and waves (noSW) USGS Barnegat Bay hydrodynamic model for Hurricane Sandy without swell, waves and wind (noSWW) COAWST model of Barnegat Bay creeks to demonstrate marsh dynamics U.S. Geological Survey simulations of hydrodynamics and morphodynamics in Cape Cod Bay, MA: Cape Cod Bay Jan - April 2021 Numerical model of salinity transport and mixing in the Hudson River Estuary Collection of COAWST model forecast for the US East Coast and Gulf of Mexico