Skip to main content
Advanced Search

Filters: Tags: Soil Carbon (X) > Types: Journal Citation (X)

14 results (77ms)   

View Results as: JSON ATOM CSV
Soil organic carbon (SOC) storage plays a major role in the global carbon cycle and is affected by many factors including land use/management changes (e.g., biofuel production-oriented changes). However, the contributions of various factors to SOC changes are not well understood and quantified. This study was designed to investigate the impacts of changing farming practices, initial SOC levels, and biological enhancement of grain production on SOC dynamics and to attribute the relative contributions of major driving forces (CO2 enrichment and farming practices) using a fractional factorial modeling design. The case study at a crop site in Iowa in the United States demonstrated that the traditional corn-soybean (CS)...
Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield...
Cultivated lands in the U.S. Midwest have been affected by soil erosion, causing soil organic carbon (SOC) redistribution in the landscape and other environmental and agricultural problems. The importance of SOC redistribution on soil productivity and crop yield, however, is still uncertain. In this study, we used a model framework, which includes the Unit Stream Power-based Erosion Deposition (USPED) and the Tillage Erosion Prediction (TEP) models, to understand the soil and SOC redistribution caused by water and tillage erosion in two agricultural fields in the U.S. Midwest. This model framework was evaluated for different digital elevation model (DEM) spatial resolutions (10-m, 24-m, 30-m, and 56-m) and topographic...
thumbnail
? Rhizodeposition, or the addition of C from roots to soil C pools, is expected to increase if net primary production is stimulated and some excess C is allocated below-ground. We investigated the effects of 5 yrs of elevated CO2 on below-ground C dynamics in a native, C3?C4 grassland ecosystem in Colorado, USA. ? Cylinder harvests following each growing season and monolith excavation at the end of the experiment provided data on root biomass, root C : N ratios, and root and soil ?13C values. We applied an isotopic mixing model to quantify new soil C inputs on elevated and ambient CO2 treatments. ? Root biomass increased by 23% and root C : N ratios increased by 26% after 5 yrs of elevated CO2. Species-specific...
thumbnail
Abstract Decomposition is central to understanding ecosystem carbon exchange and nutrient-release processes. Unlike mesic ecosystems, which have been extensively studied, xeric landscapes have received little attention; as a result, abiotic soil-respiration regulatory processes are poorly understood in xeric environments. To provide a more complete and quantitative understanding about how abiotic factors influence soil respiration in xeric ecosystems, we conducted soil- respiration and decomposition-cloth measurements in the cold desert of southeast Utah. Our study evaluated when and to what extent soil texture, moisture, temperature, organic carbon, and nitrogen influence soil respiration and examined whether...
When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects responsible for soil organic carbon losses from when the land was converted from perennial vegetation. We discuss the essential elements of what is known about soil organic matter dynamics that may result in enhanced soil carbon sequestration with changes in land-use and soil management. We review literature that reports changes in soil organic carbon after changes in land-use that favour carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration...
We quantified baseline and projected change in wildlife habitat, soil organic carbon (SOC), and water supply (recharge and runoff). For six case study watersheds we quantified the interactions of future development and changing climate on recharge, runoff and streamflow, and precipitation thresholds where dominant watershed hydrological processes shift through analysis of covariance.
Phenol oxidase and peroxidase activities in desert grassland soils at the Sevilleta Long Term Ecological Research site in central New Mexico (USA) are far greater than those of temperate soils. Activity is uniformly distributed across particles ranging from >1 mm to <38 ?m and is unaffected by autoclaving, in contrast to hydrolase activities. The sorbed enzymes are readily extractable and inactivated by boiling. High soil pH, high stabilized oxidative enzyme activity, and carbonates create optimal conditions for degradation of phenols which increase decomposition potentials and limit soil organic matter accumulation. Published in Soil Biology and Biochemistry, volume 40, issue 2, on pages 550 - 553, in 2008.
Soil respiration in semiarid ecosystems responds positively to temperature, but temperature is just one of many factors controlling soil respiration. Soil moisture can have an overriding influence, particularly during the dry/warm portions of the year. The purpose of this project was to evaluate the influence of soil moisture on the relationship between temperature and soil respiration. Soil samples collected from a range of sites arrayed across a climatic gradient were incubated under varying temperature and moisture conditions. Additionally, we evaluated the impact of substrate quality on short-term soil respiration responses by carrying out substrate-induced respiration assessments for each soil at nine different...
thumbnail
We examined the 10-day response of soil microbial biomass-N to additions of carbon (dextrose) and nitrogen (NH4NO3) to water-amended soils in a factorial experiment in four plant communities of the Chihuahuan desert of New Mexico (U.S.A.). In each site, microbial biomass-N and soil carbohydrates increased and extractable soil N decreased in response to watering alone. Fertilization with N increased microbial biomass-N in grassland soils; whereas, fertilization with C increased microbial biomass-N and decreased extractable N and P in all communities dominated by shrubs, which have invaded large areas of grassland in the Chihuahuan desert during the last 100 years. Our results support the hypothesis that the control...
Peatlands are a major reservoir of global soil carbon, yet account for just 3% of global land cover. Human impacts like draining can hinder the ability of peatlands to sequester carbon and expose their soils to fire under dry conditions. Estimating soil carbon loss from peat fires can be challenging due to uncertainty about pre-fire surface elevations. This study uses multi-temporal LiDAR to obtain pre- and post-fire elevations and estimate soil carbon loss caused by the 2011 Lateral West fire in the Great Dismal Swamp National Wildlife Refuge, VA, USA. We also determine how LiDAR elevation error affects uncertainty in our carbon loss estimate by randomly perturbing the LiDAR point elevations and recalculating elevation...
Some single-factor experiments suggest that elevated CO2 concentrations can increase soil carbon, but few experiments have examined the effects of interacting environmental factors on soil carbon dynamics. We undertook studies of soil carbon and nitrogen in a multi-factor (CO2 × temperature × soil moisture) climate change experiment on a constructed old-field ecosystem. After four growing seasons, elevated CO2 had no measurable effect on carbon and nitrogen concentrations in whole soil, particulate organic matter (POM), and mineral-associated organic matter (MOM). Analysis of stable carbon isotopes, under elevated CO2, indicated between 14 and 19% new soil carbon under two different watering treatments with as...
Global management of wetlands to suppress greenhouse gas (GHG) emissions, facilitate carbon (C) sequestration, and reduce atmospheric CO2 concentrations while simultaneously promoting agricultural gains is paramount. However, studies that relate variability in CO2 and CH4 emissions at large spatial scales are limited. We investigated three-year emissions of soil CO2 and CH4 from the primary wetland types of the Liaohe Delta, China, by focusing on a total wetland area of 3287 km2. One percent is Suaeda salsa, 24% is Phragmites australis, and 75% is rice. While S. salsa wetlands are under somewhat natural tidal influence, P. australis and rice are managed hydrologically for paper and food, respectively. Total C emissions...
Understanding of the organic layer thickness (OLT) and organic layer carbon (OLC) stocks in subarctic ecosystems is critical due to their importance in the global carbon cycle. Moreover, post-fire OLT provides an indicator of long-term successional trajectories and permafrost susceptibility to thaw. To these ends, we 1) mapped OLT and associated uncertainty at 30 m resolution in the Yukon River Basin (YRB), Alaska, employing decision tree models linking remotely sensed imagery with field and ancillary data, 2) converted OLT to OLC using a non-linear regression, 3) evaluate landscape controls on OLT and OLC, and 4) quantified the post-fire recovery of OLT and OLC. Areas of shallow (< 10 cm), moderate (≥ 10 cm and...


    map background search result map search result map Rhizodeposition stimulated by elevated CO2 in a semiarid grassland Factors Determining Soil Microbial Biomass and Nutrient Immobilization in Desert Soils Soil Respiration in the Cold Desert Environment of the Colorado Plateau (USA): Abiotic Regulators and Thresholds Rhizodeposition stimulated by elevated CO2 in a semiarid grassland Soil Respiration in the Cold Desert Environment of the Colorado Plateau (USA): Abiotic Regulators and Thresholds Factors Determining Soil Microbial Biomass and Nutrient Immobilization in Desert Soils