Skip to main content
Advanced Search

Filters: Tags: Soil Carbon (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

4 results (14ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset contains measurements of chemical concentrations of soil samples representing 28 headwater drainage basins completely within the Adirondack Park of New York State (ADK Park), one basin partially in the ADK Park, and one watershed 2 kilometers from the ADK Park boundary. Seven of these watersheds have been sampled 2 or 3 times over periods of 12 to 22 years. Soil samples were collected from pit faces exposed by shoveling. Total mass of organic matter, carbon and nitrogen in the forest floor are also presented for 16 headwater drainage basins in the ADK Park. Forest floor mass data were determined from samples collected with soil corers. The presented data are organized by six projects: the Adirondack...
Categories: Data, Data Release - Revised; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service; Tags: Adirondack Park, Adirondack Park, New York, Ambient Monitoring, B horizon, B horizon, All tags...
thumbnail
Macroclimatic drivers, such as temperature and rainfall regimes, greatly influence ecosystem structure and function in tidal saline wetlands. Understanding the ecological influence of macroclimatic drivers is important because it provides a foundation for anticipating the effects of climate change. Tidal saline wetlands include mangrove forests, salt marshes, and salt flats, which occupy similar geomorphic settings but different climatic regimes. However, most global- or regional-scale analyses have treated these wetlands as independent systems. Here we used climate and literature-derived ecological data from all three systems, collected across targeted regional-scale macroclimatic gradients, to test hypotheses...
thumbnail
Plant-mediated processes are often important in determining carbon cycling and storage in ecosystems. With climate-induced changes in the environment, plant-associated processes may also shift. Salt marshes in particular are useful systems to investigate plant-mediated carbon cycling, as these systems experience both sea-level rise and increased carbon dioxide concentrations due to climate change, in addition to stochastically experiencing extreme drought and flood conditions. We measured biomass, soil, and gas carbon pools and the fluxes between those pools using a mesocosm approach in a salt marsh system, to investigate the response of plant-mediated carbon cycling to near-term climate change.
thumbnail
Macroclimatic drivers, such as temperature and rainfall regimes, greatly influence ecosystem structure and function in tidal saline wetlands. Understanding the ecological influence of macroclimatic drivers is important because it provides a foundation for anticipating the effects of climate change. Tidal saline wetlands include mangrove forests, salt marshes, and salt flats, which occupy similar geomorphic settings but different climatic regimes. However, most global- or regional-scale analyses have treated these wetlands as independent systems. Here we used climate and literature-derived ecological data from all three systems, collected across targeted regional-scale macroclimatic gradients, to test hypotheses...


    map background search result map search result map Cell data Point data Salt marsh carbon dynamics under altered hydrologic regimes and elevated CO2 conditions, Louisiana, USA (2014-2015) Adirondack New York soil chemistry data, 1992-2017 (ver. 1.1, December 2020) Salt marsh carbon dynamics under altered hydrologic regimes and elevated CO2 conditions, Louisiana, USA (2014-2015) Adirondack New York soil chemistry data, 1992-2017 (ver. 1.1, December 2020) Point data Cell data