Skip to main content
Advanced Search

Filters: Tags: Sonoran Desert (X) > Extensions: Raster (X)

11 results (28ms)   

View Results as: JSON ATOM CSV
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for future climate (defined as the 2040-2070 normal period) under the RCP4.5 emission scenarios. Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation...
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for future climate (defined as the 2040-2070 normal period) under the RCP8.5 emission scenarios. Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation...
thumbnail
These data were compiled for the creation of a continuous, transboundary land cover map of Bird Conservation Region 33, Sonoran and Mojave Deserts (BCR 33). Objective(s) of our study were to, 1) develop a machine learning (ML) algorithm trained to classify vegetation land cover using remote sensing spectral data and phenology metrics from 2013-2020, over a large subregion of the Sonoran and Mojave Deserts BCR, 2) Calibrate, validate, and refine the final ML-derived vegetation map using a collection of openly sourced remote sensing and ground-based ancillary data, images, and limited fieldwork, and 3) Harmonize a new transboundary classification system by expanding existing land cover mapping resources from the United...
thumbnail
The dataset delineates ecological zones within California deserts. We derived ecological zones by reclassifying LANDFIRE vegetation biophysical setting types, plus defined various non-wildland (e.g. developed urban/agriculture/roads) and non-burnable (e.g. open water/barren) areas using LANDFIRE existing vegetation types. The 43 biophysical setting types present within the study area were grouped into 13 general vegetation types, which were further grouped into 4 elevation-based ecological zones plus one riparian zone according to their constituent plant associations.
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for future climate (defined as the 2040-2070 normal period) under the RCP8.5 emission scenarios. Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation...
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for current climate (defined as the 1980-2010 normal period). Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation seasonality (coefficient of variation...
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for future climate (defined as the 2040-2070 normal period) under the RCP4.5 emission scenarios. Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation...
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for future climate (defined as the 2010-2040 normal period) under the RCP4.5 emission scenario. Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation...
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for current climate (defined as the 1980-2010 normal period). Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation seasonality (coefficient of variation...
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for future climate (defined as the 2010-2040 normal period) under the RCP8.5 emission scenario. Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation...
thumbnail
This raster dataset contains biophysical settings (band 1) and wildfire frequencies (band 2) within the Sonoran Desert ecological section of California. Biophysical settings were developed by the LANDFIRE program and fires occurences were mapped by the Monitoring Trends in Burn Severity (MTBS) program.


    map background search result map search result map Biophyiscal settings and wildfire frequencies in the Sonoran Desert ecological section of California, 1984 to 2013 Ecological zones of California deserts Principal components of climate variation in the Desert Southwest for the time period 1980-2010 Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 4.5) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 8.5) Principal components of climate variation in the Desert Southwest for the future time period 2010-2040 (RCP 8.5) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 4.5) Principal components of climate variation in the Desert Southwest for the time period 1980-2010 Principal components of climate variation in the Desert Southwest for the future time period 2010-2040 (RCP 4.5) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 8.5) Random forest classification data developed from multitemporal Landsat 8 spectral data and phenology metrics for a subregion in Sonoran and Mojave Deserts, April 2013 – December 2020 Biophyiscal settings and wildfire frequencies in the Sonoran Desert ecological section of California, 1984 to 2013 Random forest classification data developed from multitemporal Landsat 8 spectral data and phenology metrics for a subregion in Sonoran and Mojave Deserts, April 2013 – December 2020 Ecological zones of California deserts Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 4.5) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 4.5) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 8.5) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 8.5) Principal components of climate variation in the Desert Southwest for the time period 1980-2010 Principal components of climate variation in the Desert Southwest for the time period 1980-2010 Principal components of climate variation in the Desert Southwest for the future time period 2010-2040 (RCP 8.5) Principal components of climate variation in the Desert Southwest for the future time period 2010-2040 (RCP 4.5)