Skip to main content
Advanced Search

Filters: Tags: South Central CASC (X)

274 results (16ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Water management in the middle portion of the Rio Grande Basin (between Elephant Butte Reservoir in New Mexico and Presidio, Texas) is challenging because water demand has continued to increase over time despite limited river water and dropping groundwater levels. While urban and agricultural users can cope with frequent droughts by using a combination of river water and pumping groundwater, little to no water reaches living river ecosystems in this region. Improving this situation requires a good understanding of river water and groundwater availability, now and in the future, as well as advantages and disadvantages of water management options to sustain these ecosystems. In particular, there is a need to determine...
thumbnail
USFWS Landscape Conservation Cooperatives (LCCs) throughout the Mississippi River Basin (MRB) have identified high nutrient runoff, a major contributor to Gulf hypoxia, and declines in wildlife populations (especially grassland and riparian birds), as conservation challenges requiring collaborative action. This project aimed to develop a spatial decision support system (DSS) to address these issues. The DSS was designed to identify MRB watersheds where application of conservation practices can (1) reduce nutrient export to the Gulf hypoxia zone and (2) enhance conservation for grassland and riparian birds, based on (3) identifying landowners willing and capable of implementing these practices. The DSS is expected...
Categories: Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2014, Bird Conservation, Birds, Birds, Birds, All tags...
thumbnail
Developing novel solutions to complex problems demands innovative approaches that are inclusive of diverse perspectives from both scientific experts and stakeholders. Across networked communities, like the South Central Climate Adaptation Science Center (CASC), it can sometimes be challenging to identify and build collaborations among researchers from different disciplines. Particularly at times like the present, during a global pandemic and recovery from its impact, a means to support a diverse, integrated and engaged network is essential for producing innovative outcomes for complex problems relevant to our changing climate. One method to foster more engaged networks is through the use of Exaptive’s Cognitive...
thumbnail
Characterized by their extreme size, intensity, and severity, megafires are the most destructive, dangerous, and costly wildfires in the U.S. Over the past two decades, megafires have become more frequent in Oklahoma and Texas along with increasing extreme weather events and changes to fuel types caused by woody plant encroachment into grasslands. As climate change and woody plant encroachment are expected to continue or even accelerate, it is important to evaluate megafire risks and locate high-risk areas. This project will develop a new Megafire Risk Evaluation System (MERES) and make future projections of megafire probability in Oklahoma and Texas from 2024 to 2100. Outcomes and products from this project will...
thumbnail
The Science Issue and Relevance: Coastal wetlands are some of the most productive and valuable habitats in the world. Louisiana contains 40% of the United States’ coastal wetlands, which provide critical habitat for waterfowl and fisheries, as well as many other benefits, such as storm surge protection for coastal communities. In terms of ecosystem services, biological resource production, and infrastructure investments, the value of Louisiana’s coastal wetlands exceeds $100 billion. Thus, stakeholders are gravely concerned about sea-level rise which is causing coastal marsh habitat to convert to open water and resulting in the highest rates of wetland loss in the world, with nearly 1.2 million acres lost since...
thumbnail
The Rio Grande cutthroat trout is New Mexico’s state fish; but habitat loss and non-native trout invasions threaten the persistence of this fish throughout the remaining 12% of its historic range. Stakeholders, including state agencies, federal agencies, Tribal nations, Pueblos, and private groups are particularly concerned about the impact that non-native brown trout have on native cutthroat trout. This project will be the first to demonstrate how non-native brown trout negatively affect Rio Grande cutthroat trout populations. The project has two primary objectives: 1) compare the health and characteristics of native Rio Grande Cutthroat Trout in areas both with and without invasive brown trout in cold and warm...
thumbnail
The Ogallala Aquifer lies beneath 111 million acres of land in Wyoming, South Dakota, Nebraska, Kansas, Colorado, Oklahoma, Texas, and New Mexico. The aquifer provides water for approximately 1.9 million people and has been instrumental in the development of the robust agriculture economy of the Great Plains region. It is also vitally important to the ecology of the region, serving as a critical source of groundwater and sustaining creeks and streams that would otherwise run dry during periods of water scarcity. However, the various social, economic, and ecological challenges of managing this aquifer are expected to increase with climate change as hotter, drier summers exacerbate already unsustainable water demands....
thumbnail
The Rio Grande River is a critical source of freshwater for 13 million people in Colorado, Texas, New Mexico, and Mexico. More than half of the Rio Grande’s streamflow originates as snowmelt in Colorado’s mountains, meaning that changes in the amount of snowmelt can impact the water supply for communities along the entire river. Snowmelt runoff is therefore an important component of water supply outlooks for the region, which are used by a variety of stakeholders to anticipate water availability in the springtime. It is critical that these water supply outlooks be as accurate as possible. Errors can cost states millions of dollars due to mis-allocation of water and lost agricultural productivity. There is a perception...
thumbnail
Wildfires scorched 10 million acres across the United States in 2015, and for the first time on record, wildfire suppression costs topped $2 billion. Wildfire danger modeling is an important tool for understanding when and where wildfires will occur, and recent work by our team in the South Central United States has shown wildfire danger models may be improved by incorporating soil moisture information. Advancements in wildfire danger modeling may increase wildfire preparedness, and therefore decrease loss of life, property, and habitat due to wildfire. Still, soil moisture—an important determinant of wildfire risk—is not currently used for wildfire danger assessments because data are generally unavailable at the...
thumbnail
Spatial data depicting marsh types (e.g. fresh, intermediate, brackish and saline) for the north-central Gulf of Mexico coast are inconsistent across the region, limiting the ability of conservation planners to model the current and future capacity of the coast to sustain priority species. The goal of this study was to (1) update the resolution of coastal Texas vegetation data to match that of Louisiana, Mississippi, and Alabama, and (2) update vegetation maps for the Texas through Alabama region using current Landsat Imagery. Creating consistent regional vegetation maps will enable scientists to model vegetation response to and potential impacts of future climate change.
thumbnail
Prairies were once widespread across North America, but are now one of the most endangered and least protected ecosystems in the world. Agriculture and residential development have reduced once extensive prairies into a patchwork of remnant prairies and “surrogate” grasslands (e.g., hayfields, planted pastures). Grassland ecosystems and many grassland-dependent birds are also particularly vulnerable to rapid shifts in climate and associated changes in drought and extreme weather. The Central Flyway is a vast bird migration route that comprises more than half of the continental U.S., and extends from Central America to Canada, and harbors the greatest diversity of grassland birds in North America. Throughout this...
thumbnail
The fast pace of change in coastal zones, the trillions of dollars of investment in human communities in coastal areas, and the myriad of ecosystem services natural coastal environments provide makes managing climate-related risks along coasts a massive challenge for all of the U.S. coastal states and territories. Answering questions about both the costs and the benefits of alternative adaptation strategies in the near term is critical to taxpayers, decision-makers, and to the biodiversity of the planet. There is significant public and private interest in using ecosystem based adaptation approaches to conserve critical significant ecosystems in coastal watersheds, estuaries and intertidal zones and to protect man-made...
thumbnail
This data set includes a dropped-edge analysis of grassland and forest networks in the South Central United States based on land cover data from 2006 and graph theory to evaluate Landscape Resistance to Dispersal (LRD). LRD represents the degree to which habitat availability limits species movement. LRD decreases as habitat availability increases and increases as habitat availability decreases. This data set includes a range of LRD thresholds to represent species with different dispersal abilities and responses to landscape structure. A threshold indicates the highest LRD that still allows dispersal by a particular group of species. LRD thresholds are included in the data set, with low values representing connectivity...
thumbnail
The threat of droughts and their associated impacts on the landscape and human communities have long been recognized in the United States, especially in high risk areas such as the southcentral region. This project examines whether existing drought indices can predict the occurrence of drought events and their actual damages, how the adaptive capacity (i.e., resilience) varies across space, and what public outreach and engagement effort would be most effective for mitigation of risk and impacts. The study region includes all 503 counties in Arkansas, Louisiana, New Mexico, Oklahoma, and Texas. This data set was created to assess the community resilience to the drought hazards using the Resilience Inference Measurement...
This webinar is part of a series featuring South Central Climate Science Center researchers studying the Rio Grande, a critical water resource for people and wildlife. Learn more at southcentralclimate.org and view the other webinars in this series here.
thumbnail
This data set includes bi-monthly data on submerged aquatic vegetation species composition, percent cover, above and below ground biomass and environmental data at coastal sites across the fresh to saline gradient in Barataria Bay, LA. This project was co-funded by the South Central Climate Adaptation Science Center and the Gulf Coast Prairie and the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperatives. An alternate reference to this product can be found here.


map background search result map search result map Mapping Fresh, Intermediate, Brackish and Saline Marshes in the North Central Gulf of Mexico Coast to Inform Future Projections Science to Assess Future Conservation Practices for the Mississippi River Basin Developing Tools for Improved Water Supply Forecasting in the Rio Grande Headwaters Combined county-level drought incidence, damage, and census data Submerged aquatic vegetation and environmental data along a salinity gradient in Barataria Bay, Louisiana (2015) Rio Grande-Rio Bravo Basin Subset Data Wildfire Probability Mapping Based on Regional Soil Moisture Models Dropped-edge analysis of terrestrial connectivity of grassland and forest networks in the South Central United States based on the National Land Cover Database from 2006 Susceptibility of Rio Grande Cutthroat Trout to Displacement by Non-Native Brown Trout and Implications for Future Management Strategies for Reducing the Vulnerability of Grassland Birds to Climate Change within the Central Flyway Understanding New Paradigms for “Environmental Flows” and Water Allocation in the Middle Rio Grande River Basin in a Changing Climate Organizing and Synthesizing Ogallala Aquifer Data to Facilitate Research and Resource Management Evaluating Ecosystem-Based Adaptation Options for Coastal Resilience Optimizing Data and Discovery Knowledge Transfer Across Researchers and Stakeholders Using Innovative Technology (“Cognitive Cities”) Understanding Impacts of Sea-Level Rise and Land Management on Critical Coastal Marsh Habitat Megafire Risk Evaluation System (MERES) for the Southern Great Plains Mapping Fresh, Intermediate, Brackish and Saline Marshes in the North Central Gulf of Mexico Coast to Inform Future Projections Understanding Impacts of Sea-Level Rise and Land Management on Critical Coastal Marsh Habitat Understanding New Paradigms for “Environmental Flows” and Water Allocation in the Middle Rio Grande River Basin in a Changing Climate Submerged aquatic vegetation and environmental data along a salinity gradient in Barataria Bay, Louisiana (2015) Megafire Risk Evaluation System (MERES) for the Southern Great Plains Susceptibility of Rio Grande Cutthroat Trout to Displacement by Non-Native Brown Trout and Implications for Future Management Rio Grande-Rio Bravo Basin Subset Data Dropped-edge analysis of terrestrial connectivity of grassland and forest networks in the South Central United States based on the National Land Cover Database from 2006 Wildfire Probability Mapping Based on Regional Soil Moisture Models Combined county-level drought incidence, damage, and census data Optimizing Data and Discovery Knowledge Transfer Across Researchers and Stakeholders Using Innovative Technology (“Cognitive Cities”) Organizing and Synthesizing Ogallala Aquifer Data to Facilitate Research and Resource Management Strategies for Reducing the Vulnerability of Grassland Birds to Climate Change within the Central Flyway Science to Assess Future Conservation Practices for the Mississippi River Basin Evaluating Ecosystem-Based Adaptation Options for Coastal Resilience