Skip to main content
Advanced Search

Filters: Tags: Southwestern Lake Superior (X)

11 results (38ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset is comprised of three files containing northing, easting, and elevation ("XYZ") information for light detection and ranging (LiDAR) data representing beach topography and sonar data representing near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The point data is the same as that in LAS (industry-standard binary format for storing large point clouds) files that were used to create a digital elevation model (DEM) of the approximately 5.9 square kilometer (2.3 square mile) surveyed area. LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and methodology similar to that described by Huizinga and Wagner (2019). Multi-beam sonar data were collected...
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 1-meter (m; 3.28084 foot [ft]) cell size and was created from a LAS (industry-standard binary format for storing large point clouds) dataset of terrestrial light detection and ranging (LiDAR) data with an average point spacing of 0.137 m (0.45 ft). LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and methodology similar to that described by Huizinga and Wagner (2019). References: Huizinga, R.J. and Wagner, D.M., 2019, Erosion monitoring along selected bank locations of the Coosa River in Alabama using terrestrial light detection and ranging...
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 10-meter (m; 32.8084 feet) cell size and was created from a LAS (industry-standard binary format for storing large point clouds) dataset of terrestrial light detection and ranging (LiDAR) data representing the beach topography and sonar data representing the bathymetry to approximately 1.3 kilometers (0.8 miles) offshore. Average point spacing of the LAS files in the dataset are as follows: LiDAR, 0.137 m; multi-beam sonar, 1.029 m; single-beam sonar, 0.999 m. LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and...
thumbnail
This dataset is a LAS (industry-standard binary format for storing large point clouds) dataset containing light detection and ranging (LiDAR) data and sonar data representing the beach and near-shore topography of Lake Superior at Minnesota Point, Duluth, Minnesota. Average point spacing of the LAS files in the dataset are as follows: LiDAR, 0.137 meters (m); multi-beam sonar, 1.029 m; single-beam sonar, 0.999 m. The LAS dataset was used to create a 10-m (32.8084 feet) digital elevation model (DEM) of the approximately 5.9 square kilometer (2.3 square mile) surveyed area using the "LAS dataset to raster" tool in Esri ArcGIS, version 10.7. LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS...
thumbnail
An extreme flood in 2016 caused widespread culvert blockages and road failures across northern Wisconsin, including extensive damage along steep tributaries and ravines in the Marengo River watershed. Along with the flooding, there were fluvial erosion hazards (FEH) associated with a large amount of erosion in headwater areas. Of special concern were FEHs associated with gullying, loss of wetland storage, and valley-side mass wasting. In 2020, a pilot study was begun to map and classify ephemeral and perennial streams and wetlands in terms of their susceptibility to fluvial erosion hazards. This study combines rapid geomorphic field assessments of river corridor erosion and coupled sediment and debris delivery with...
thumbnail
An extreme flood in 2016 caused widespread culvert blockages and road failures across northern Wisconsin, including extensive damage along steep tributaries and ravines in the Marengo River watershed. Along with the flooding, there were fluvial erosion hazards (FEH) associated with a large amount of erosion in headwater areas. Of special concern were FEHs associated with gullying, loss of wetland storage, and valley-side mass wasting. In 2020, a pilot study was begun to map and classify ephemeral and perennial streams and wetlands in terms of their susceptibility to fluvial erosion hazards. This study combines rapid geomorphic field assessments of river corridor erosion and coupled sediment and debris delivery with...
thumbnail
This dataset is a LAS (industry-standard binary format for storing large point clouds) dataset containing light detection and ranging (LiDAR) data representing beach topography of Lake Superior at Minnesota Point, Duluth, Minnesota. Average point spacing of the LiDAR points in the dataset is 0.137 meters (m; 0.45 feet [ft]). The LAS dataset was used to create a 1-m (3.28084 ft) digital elevation model (DEM) of the approximately 4 kilometer (2.5 mile) surveyed reach of the beach. LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and methodology similar to that described by Huizinga and Wagner (2019). References: Huizinga, R.J. and Wagner, D.M., 2019, Erosion monitoring along selected...
thumbnail
This dataset represents elevation data of the beach topography and near-shore bathymetry before placing dredge spoils on the beach at Minnesota Point near the Duluth Entry of Lake Superior, Duluth, Minnesota. The data was acquired using a lidar sensor, single-beam and multibeam sonars. The dataset includes DEMs of the terrestrial beach areas and topobathy (combined terrestrial and bathymetry), LAS and XYZ files of lidar, single-beam, and multibeam point data, and 2-ft contours. Data were collected in cooperation with the U.S. Army Corps of Engineers (USACE), Detroit District, to evaluate movement of placed material and overall change of near-shore bathymetry after beach nourishment.
thumbnail
The elevation contours in this dataset have a 2-foot (ft) interval and were derived from a digital elevation model (DEM) of beach topography and nearshore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The DEM has a 10-meter (32.8084 ft) cell size and was created from LiDAR data representing beach topography and sonar data representing bathymetry to a distance of approximately 1.3 kilometers (0.8 miles) offshore. LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and methodology similar to that described by Huizinga and Wagner (2019). Multi-beam sonar data were collected August 7-11, 2019 using an R2Sonic 2024 sonar unit and methodology similar to that described...
thumbnail
An extreme flood in 2016 caused widespread culvert blockages and road failures across northern Wisconsin, including extensive damage along steep tributaries and ravines in the Marengo River watershed. Along with the flooding, there were fluvial erosion hazards (FEH) associated with a large amount of erosion in headwater areas. Of special concern were FEHs associated with gullying, loss of wetland storage, and valley-side mass wasting. In 2020, a pilot study was begun to map and classify ephemeral and perennial streams and wetlands in terms of their susceptibility to fluvial erosion hazards. This study combines rapid geomorphic field assessments of river corridor erosion and coupled sediment and debris delivery with...
thumbnail
Topobathy was surveyed during the fall of 2022 for two locations along Minnesota Point, where past beach nourishment (dredge materials) were placed. These topobathymetric surveys of Minnesota Point and Lake Superior are repeat surveys that will be used evaluate movement of placed material and overall change of near-shore bathymetry. The data was acquired using a lidar sensor, and single-beam and multibeam sonars. The data includes DEMs of the terrestrial beach areas and near-shore bathymetries of Lake Superior near the Duluth and Superior entries of Minnesota Point, 2-foot smoothed contours, LAS and XYZ files. Data were collected in cooperation with the U.S. Army Corps of Engineers (USACE), Detroit District.


    map background search result map search result map Beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, August 2019 LAS dataset of LiDAR and sonar data collected at Lake Superior at Minnesota Point, Duluth, MN, August 2019 Digital elevation model (DEM) of beach topography of Lake Superior at Minnesota Point, Duluth, MN, August 2019 LAS dataset of LiDAR data collected at Lake Superior at Minnesota Point, Duluth, MN, August 2019 Elevation contours of beach topography and nearshore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, from hydrographic survey August 2019 XYZ files of LiDAR and sonar data collected at Lake Superior at Minnesota Point, Duluth, MN, August 2019 Fluvial Erosion Hazard Rapid Geomorphic Assessment Data from the Marengo Watershed, Ashland County, Wisconsin Fluvial Erosion Hazard Analysis Data from the Marengo River Watershed, Ashland County, Wisconsin Fluvial Erosion Hazard Geospatial Network from the Marengo River Watershed, Ashland County, Wisconsin Minnesota Point beach topography and near-shore bathymetry surveys of Lake Superior, Duluth, MN, August - November 2022 (Under Revision) Beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, June 2021 (Under Revision) Beach topography and near-shore bathymetry of Minnesota Point near the Duluth Entry of Lake Superior, Duluth, MN, June 2021 (Under Revision) Digital elevation model (DEM) of beach topography of Lake Superior at Minnesota Point, Duluth, MN, August 2019 LAS dataset of LiDAR data collected at Lake Superior at Minnesota Point, Duluth, MN, August 2019 Elevation contours of beach topography and nearshore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, from hydrographic survey August 2019 LAS dataset of LiDAR and sonar data collected at Lake Superior at Minnesota Point, Duluth, MN, August 2019 XYZ files of LiDAR and sonar data collected at Lake Superior at Minnesota Point, Duluth, MN, August 2019 Beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, August 2019 Minnesota Point beach topography and near-shore bathymetry surveys of Lake Superior, Duluth, MN, August - November 2022 (Under Revision) Fluvial Erosion Hazard Analysis Data from the Marengo River Watershed, Ashland County, Wisconsin Fluvial Erosion Hazard Geospatial Network from the Marengo River Watershed, Ashland County, Wisconsin Fluvial Erosion Hazard Rapid Geomorphic Assessment Data from the Marengo Watershed, Ashland County, Wisconsin