Skip to main content
Advanced Search

Filters: Tags: Spatial input data (X)

2 results (8ms)   

View Results as: JSON ATOM CSV
In a given watershed, the accuracy of models in predicting the hydrologic and erosion behavior depends, to a large extent, on the quality of the knowledge in respect of the spatial rainfall. The hydrologic and erosion aspects of rainfall are often discussed without due regard to any resulting improvement in watershed modeling. Thus, there is a real need for streamlining raingauge networks in order to reflect rainfall variability and its effect on the prediction of water, sediment and nutrient fluxes at the watershed scale. In this study, such an impact was analyzed using 9-year data collected at the outlets of two watersheds encompassing a range of climates, surface areas and environmental conditions. The Soil and...
The accuracy of agricultural nonpoint source pollution models depends to a great extent on how well model input spatial parameters describe the relevant characteristics of the watershed. It is assumed that reducing the precision of spatial input parameters affects the simulation results of runoff and sediment yield from the entire watershed. However, there may be no significant increase in the accuracy of models, as a result of more precise topographic or soil information, which increase the input data collection and preparation. The objective of this study was to determine the impact of the mesh size of the digital elevation model, DEM (from 20 to 500 m) and the soil map scale (1/25,000; 1/250,000 and; 1/500,000...