Skip to main content
Advanced Search

Filters: Tags: Streamflow modeling (X)

95 results (47ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data release contains inputs for and outputs from hydrologic simulations of the upper Chattahoochee River Basin in northeast Georgia using the Precipitation Runoff Modeling System (PRMS). These simulations were developed to provide example applications of enhancements to the PRMS for the following topics: two new time-series input options (dynamic parameter module and water-use module), two new output options (Hydrologic Response Unit (HRU) summary output module and basin variables summary output module), and three updates of existing capabilities (stream and lake flow routing module, surface-depression storage and flow simulation, and the initial-conditions specification). These PRMS model input and output...
thumbnail
The Apalachicola-Chattahoochee-Flint River Basin (ACFB) was modeled to produce fourteen simulations of streamflow for demonstration of enhancements to the Precipitation Runoff Modeling System (PRMS); seven simulations without water use effects and seven simulations with water use effects. The seven simulations without water use were for 1) the whole ACFB basin (1982-2012), 2) the Chestatee River sub-basin (1982-2012), 3) the Chipola River sub-basin (1982-2012), 4) the Ichawaynochaway Creek sub-basin (1982-2012), 5) the Potato Creek sub-basin (1942-2012), 6) the Spring Creek sub-basin (1952-2012), and 7) the upper Chattahoochee River sub-basin (1982-2012). The seven simulations with water use effects were for the...
thumbnail
The southeastern United States was modeled to produce 59 simulations of historical and potential future streamflow using the Precipitation Runoff Modeling System (PRMS) as part of the study documented in LaFontaine and others (2019). One simulation used historical observations of climate, 13 used historical climate simulations using statistically downscaled general circulation model (GCM) output from the Coupled Model Intercomparison Project (CMIP5), and 45 used potential future climate simulations using statistically downscaled CMIP5 GCMs for four representative concentration pathways. Historical simulations with observations are for the period 1952-2010, historical simulations with the GCMs are for the period...
thumbnail
Climatic data are from Daymet (Thornton and others, 2016) and include maximum daily air temperature and total daily precipitation on a 1-km resolution; these data replace and update the original climate data used for the tool (Williamson and others, 2009).
thumbnail
Streamflow was collected at various streamgages in western Pennsylvania in support of the scientific investigations report "Estimation of Base Flow on Ungaged, Periodically Measured Streams in Small Watersheds in Western Pennsylvania". Data observed at the streamgages for the period of August 1, 2014 through March 31, 2017 are considered. This dataset includes 1) all data used to develop prediction intervals for the titled estimation site based upon the titled index streamgage for the period of May 1, 2015 to March 31, 2017 and 2) evaluation of data observed before May 1, 2015. For prediction interval development, a Move.1 regression was developed between the titled estimation site and titled index streamgage. From...
thumbnail
Streamflow was collected at various streamgages in western Pennsylvania in support of the scientific investigations report "Estimation of Base Flow on Ungaged, Periodically Measured Streams in Small Watersheds in Western Pennsylvania". Data observed at the streamgages for the period of August 1, 2014 through March 31, 2017 are considered. This dataset includes 1) all data used to develop prediction intervals for the titled estimation site based upon the titled index streamgage for the period of May 1, 2015 to March 31, 2017 and 2) evaluation of data observed before May 1, 2015. For prediction interval development, a Move.1 regression was developed between the titled estimation site and titled index streamgage. From...
thumbnail
This child page contains the model input and output data used in the model validation process for one Program for Predicting Polluting Particle Passage through Pits, Puddles and Ponds (P8) model during the validation period of the study detailed in the associated Scientific Investigations Report "Comparison of Storm Runoff Models for a Small Watershed in an Urban Metropolitan Area, Albuquerque, New Mexico" (Shephard and Douglas-Mankin, 2020). This model was used to simulate storm runoff in the Hahn Arroyo Watershed, an urbanized watershed with concrete lined channels in the northeastern quadrant of Albuquerque that exhibits flashy, monsoonal-driven storm runoff events. The model is described in detail in the associated...
thumbnail
The Water Availability Tool for Environmental Resources (WATER-KY; Williamson and others, 2009) provides the ability to simulate streamflow for ungaged basins. This model integrates TOPMODEL (Beven and Kirkby, 1979) for pervious portions of the landscape with simulation of flow generated from impervious surfaces (USDA, 1986). A restructured version of this decision support tool translates the abilities of WATER to a format that can be used without proprietary software (Williamson and others, 2021). Additional functionality has also been added to include hydrologic response units (HRUs) that are defined based on three fundamental land-use categories: forest, agricultural land, and developed areas, based on subsequent...
thumbnail
Our objective was to model specific mean daily flow (mean daily flow divided by drainage area [cubic feet per second per square mile]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate.We used a random forest modeling approach to model the relation between specific mean daily flow on gaged streams (115 gages) and environmental variables. We then projected specific mean...
thumbnail
Our objective was to model specific minimum flow (mean of the annual minimum flows divided by drainage area [cubic feet per second per square mile]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between specific minimum flow on gaged streams (115 gages) and environmental variables. We then projected...
thumbnail
This data release contains inputs for and outputs from hydrologic simulations for the conterminous United States (CONUS) using the Precipitation Runoff Modeling System (PRMS) version 5.1.0 and the USGS National Hydrologic Model Infrastructure (NHMI, Regan and others, 2018). Historical simulations using the Maurer forcings (Maurer and others, 2002) were conducted for the period 1950-2010. This metadata record documents the simulation output files for simulations ran using the dynamic parameters file. The output files are aggregated at the HUC4 level and are grouped and downloadable by HUC2 hydrologic region. Each zip folder contains identical information, just for a different region and set of hydrologic response...
thumbnail
The continental United States (CONUS) was modeled to produce simulations of historical and potential future streamflow using the Precipitation-Runoff Modeling System (PRMS) application of the USGS National Hydrologic Model Infrastructure (NHMI; Regan and others, 2018). This child page specifically contains atmospheric forcings (daily minimum air temperature, daily maximum air temperature, and daily precipitation accumulation) from each of the global circulation models (GCMs) presented in table1_GCMs_used.csv, using the Representative Concentration Pathway 4.5 for simulating potential future streamflow for the period 2006 - 2100.
thumbnail
This data release contains inputs for and outputs from hydrologic simulations of the Apalachicola-Chattahoochee-Flint River Basin (ACFB) in the southeastern U.S. using the Precipitation Runoff Modeling System (PRMS). Seven hydrologic models, one coarse-resolution model for the entire ACFB and six fine-resolution models of tributary sub-basins. These simulations were developed to provide estimates of water availability and statistics of streamflow. These PRMS model input and output data are intended to accompany a U.S. Geological Survey Scientific Investigations Report (LaFontaine and others, 2017); they include three types of data: 1) PRMS input parameter and data files, 2) PRMS output data files, and 3) GIS files...
thumbnail
Our objective was to model minimum flow coefficient of variation (CV) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between minimum flow CV (the standard deviation of annual minimum flows times 100 divided by the mean of annual minimum flows) on gaged streams (115 gages) and environmental variables....
thumbnail
The National Hydrologic Model (NHM) is a modeling framework which has been applied to the continental United States through the Precipitation Runoff Modeling System (PRMS). The PRMS model of Puerto Rico extends the NHM and allows the simulation of rainfall-driven hydrologic conditions in the Commonwealth. Calibration of the NHM Puerto Rico model involved an initial manual calibration to understand the important processes and develop a basic representation of the hydrology. This is followed by an automated calibration procedure using the Let Us CAlibrate (LUCA) multi-objective function model calibration tool. A four-step procedure is used in Luca to separately calibrate parameters for solar radiation, evapotranspiration,...
thumbnail
Our objective was to model the risk of becoming intermittent under drier climate conditions on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a conditional inference modeling approach to model the relation between intermittency status on gaged streams (115 gages) and selected mean and minimum flow metrics. We then projected intermittency status and if a stream...
thumbnail
Streamflow was collected at various streamgages in western Pennsylvania in support of the scientific investigations report "Estimation of Base Flow on Ungaged, Periodically Measured Streams in Small Watersheds in Western Pennsylvania". Data were selected for the development of 12 regressions to examine the differences between prediction intervals when runoff-influenced data were included in the data selection and when it was not. This dataset includes 1) data used to develop prediction intervals for the titled estimation site based upon the titled index streamgage, 2) zero streamflow information, and 3) evaluation of the prediction interval with non-runoff influenced data. For prediction interval development a Move.1...
thumbnail
The continental United States (CONUS) was modeled to produce simulations of historical and potential future streamflow using the Precipitation-Runoff Modeling System (PRMS) application of the USGS National Hydrologic Model Infrastructure (NHMI; Regan and others, 2018). This child page specifically contains outputs of streamflow for each stream segment in the model domain and is based on parameterization with dynamic land cover. The parameters that were allowed to vary were related to dominant land cover type, percent impervious area, and precipitation interception by the plant canopy and snowpack.The PRMS parameters describing vegetation and impervious area were derived from annual estimates of land cover to incorporate...
thumbnail
In 2009, the Kentucky Water Science Center completed the Water Availability Tool for Environmental Resources (WATER-KY), which provided the ability to simulate streamflow for the period 1980-2000. This model integrated TOPMODEL (Beven and Kirkby, 1979) for pervious portions of the landscape with simulation of flow generated from impervious surfaces (USDA, 1986). Associated products included a flow-duration curve, load-duration curves when water-quality data were available, and general water balance. WATER-KY required a dedicated ArcGIS license with the Spatial Analyst extension, which made it difficult to use for some cooperators and limited integration with other hydrologic approaches. This new version translates...
thumbnail
The upper Chattahoochee River Basin in northeast Georgia was modeled to produce seven example simulations of streamflow for demonstration of enhancements to the Precipitation Runoff Modeling System (PRMS). These data document the PRMS output data files from each of these simulations. Output files for the following simulations are included: 1) a baseline simulation of the existing model (includes HRU summary and basin variables output modules, and updates to depression storage), 2) a simulation using the dynamic parameters enhancement, 3) a simulation that generates an initial conditions file, 4) a simulation that uses a previously generated initial conditions file, 5) a simulation that uses the flow replacement...


map background search result map search result map Predicted minimum flow coefficient of variation (CV) for small streams in the Upper Colorado River Basin under historic hydrologic conditions. Predicted specific mean daily flow Predicted specific minimum flow Predicted hydrology (intermittency) under drier climate conditions Model Input and Output for Hydrologic Simulations of the Upper Chattahoochee River Basin that Demonstrate Enhancements to the Precipitation Runoff Modeling System Model Input and Output for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin using the Precipitation Runoff Modeling System Precipitation Runoff Modeling System Output Data from Hydrologic Simulations of the Upper Chattahoochee River Basin in Northeast Georgia, United States Output Data from Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. using the Precipitation Runoff Modeling System Precipitation Runoff Modeling System Input Data for Hydrologic Simulations of the Southeastern United States for Historical and Future Conditions Runoff Influence Analysis Estimation Site 03081800; Spreadsheets and Metadata Estimation Site 03105927; Spreadsheets and Metadata P8 Validation Period Input and Output Data Water Availability Tool for Environmental Resources for the Commonwealth of Kentucky updated for 2019 Water Availability Tool for Environmental Resources for the Commonwealth of Kentucky updated for 2019 - Climate Water Availability Tool for Environmental Resources for Haw Creek, Indiana Output Data by HUC4 Sub-basin for Hydrologic Simulations of the CONUS using the NHM-PRMS, 1950-2010, Maurer Calibration, Dynamic Parameters Input Files for Hydrologic Simulations for the Conterminous United States for Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) Representative Concentration Pathway (RCP) 4.5 PRMS simulator used to assess rainfall, runoff, and river flow for the National Hydrologic Model (NHM) Puerto Rico Output Files from Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) with Dynamic Land Cover P8 Validation Period Input and Output Data Water Availability Tool for Environmental Resources for Haw Creek, Indiana Model Input and Output for Hydrologic Simulations of the Upper Chattahoochee River Basin that Demonstrate Enhancements to the Precipitation Runoff Modeling System Precipitation Runoff Modeling System Output Data from Hydrologic Simulations of the Upper Chattahoochee River Basin in Northeast Georgia, United States Runoff Influence Analysis Estimation Site 03081800; Spreadsheets and Metadata Estimation Site 03105927; Spreadsheets and Metadata PRMS simulator used to assess rainfall, runoff, and river flow for the National Hydrologic Model (NHM) Puerto Rico Output Data from Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. using the Precipitation Runoff Modeling System Model Input and Output for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin using the Precipitation Runoff Modeling System Water Availability Tool for Environmental Resources for the Commonwealth of Kentucky updated for 2019 Water Availability Tool for Environmental Resources for the Commonwealth of Kentucky updated for 2019 - Climate Predicted hydrology (intermittency) under drier climate conditions Predicted specific mean daily flow Predicted specific minimum flow Predicted minimum flow coefficient of variation (CV) for small streams in the Upper Colorado River Basin under historic hydrologic conditions. Precipitation Runoff Modeling System Input Data for Hydrologic Simulations of the Southeastern United States for Historical and Future Conditions Output Data by HUC4 Sub-basin for Hydrologic Simulations of the CONUS using the NHM-PRMS, 1950-2010, Maurer Calibration, Dynamic Parameters Input Files for Hydrologic Simulations for the Conterminous United States for Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) Representative Concentration Pathway (RCP) 4.5 Output Files from Hydrologic Simulations for the Conterminous United States for Historical and Future Conditions Using the National Hydrologic Model Infrastructure (NHMI) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) with Dynamic Land Cover