Skip to main content
Advanced Search

Filters: Tags: Structure (X) > Extensions: Citation (X)

4 results (44ms)   

View Results as: JSON ATOM CSV
The purpose of this volume is to create a resource for regional land and resource managers and researchers by synthesizing the latest research on the 1) historical/current status of landscape-scale drivers and ecosystem processes, including anthropogenic activities, 2) future projected changes of each, and 3) the impacts of changes on important resources. The individual sections can be informative alone, but when combined we can see a holistic picture of the drivers of landscape change in our region. The sections are short but contain a wealth of information and resources for more in-depth knowledge, and they highlight key findings and key information gaps so the most important information is easy to find and digest....
In order to identify approaches for integrated gasification combined cycle (IGCC) plant optimization it is necessary to analyse where and why the losses in the process occur. Therefore a structured exergy analysis of an IGCC with carbon capture was performed to identify losses on a plant, subsystem and individual component level. The investigation of the IGCC base case revealed an exergetic efficiency of 40%. Thus, 60% of the whole fuel exergy is lost in the process. On the subsystem level it was found that the major loss contributor is the combined cycle followed by the gas treatment section and the gasification island. Furthermore, it was demonstrated that the significance of the losses is higher in upstream processes...
In this study, we investigate changes in ecosystem structure that occur over a gradient of land-degradation in the southwestern USA, where shrubs are encroaching into native grassland. We evaluate a conceptual model which posits that the development of biotic and abiotic structural connectivity is due to ecogeomorphic feedbacks. Three hypotheses are evaluated: 1. Over the shrub-encroachment gradient, the difference in soil properties under each surface-cover type will change non-linearly, becoming increasingly different; 2. There will be a reduction in vegetation cover and an increase in vegetation-patch size that is concurrent with an increase in the spatial heterogeneity of soil properties over the shrub-encroachment...
Regional economic impact assessment (REIA) and social impact assessment (SIA) are methodologically close, since REIA provides predictions of change in employment both directly and indirectly resulting from a project, thereby giving some indication of future population changes, derived demand for social services and infrastructure, and the likely regional social mix. There are, however, a number of theoretical difficulties with conventional REIAs. As extrapolations they normally avoid discussion of processes of structural change, which could result in substantial changes within the time horizon of a project. Another issue is the justification for including secondary project impacts in assessing a project's worth....