Skip to main content
Advanced Search

Filters: Tags: Template 330 (X)

8 results (7ms)   

View Results as: JSON ATOM CSV
Description of Work Since 2010, connecting channels have been included in each of the Great Lakes’ Lake Management Plans (LaMPs). Lake Ontario now includes both the Niagara River and the St. Lawrence River. The Niagara River is well characterized by a number of long-term programs, but because of the lack of tributary water-quality data, the St. Lawrence River and its tributaries constitute a data gap in the information needed for the Lake Ontario to fulfill its goals. Critical information needs, including basic water-quality parameters, total suspended solids, nutrients and flow data. These data are needed to aid in the identification of sources of nutrient and sediment loading to the St. Lawrence. The monitoring...
thumbnail
Description of Work To date many meetings have been attended and coalitions developed between USGS Water Mission area and NYSDEC and EPA region 2 which have spun off into several other monitoring and BUI delisting projects funded by Region 2 through the USGS/EPA IA. This has been a perfect example of leveraging USGS GLRI funds to develop additional GLRI-related program for the Lake Ontario LaMP partners, especially for tributary nutrient and sediment loading to Lake Ontario and helping collect and assess the data needed to remove BUI impairments at the Rochester Embayment and St. Lawrence/Massena AOCs for benthos and phytoplankton impairments.
thumbnail
Description of Work Participation on the Lake Erie Lakewide Management Plan Workgroup and related subcommittees such as toxics, sources and loads, nutrients, and biodiversity. Attend meetings and conferences associated with LE LAMP activities. This includes The Lake Erie Millennium Network, CSMI, Ohio Phosphorus Task Force, and other meetings or workshops addressing nutrient and toxicity issues in Lake Erie. Communicate USGS activities in the Lake Erie Basin that can influence understanding or impact decision making.
thumbnail
Description of Work USGS scientists provide expertise, capacity and support for the implementation of Lakewide Management Plans (LaMPs) and the associated goals, objectives and targets for each of the Great Lakes, including Lake Superior. The LaMPs are critical binational groups that are important for promoting Great Lakes restoration. Specifically, LaMP efforts include compiling monitoring and research information into the Great Lakes web mapper (SiGL Mapper). The Mapper’s focus is on information that will result in recognition of areas where data are being collected, missing or sparse, and on areas where ecosystems are vulnerable.
thumbnail
Description of Work The Science in the Great Lakes (SiGL) Mapper is a map-based discovery tool that spatially displays basin-wide multi-disciplinary monitoring and research activities conducted by both USGS and partners from all five Great Lakes. It was designed to help Great Lakes researchers and managers strategically plan, implement, and analyze monitoring and restoration activities by providing easy access to historical and on-going project metadata while allowing them to identify gaps (spatially and topically) that have been underrepresented in previous efforts or need further study. SiGL provides a user-friendly and efficient way to explore Great Lakes projects and data through robust search options while...
thumbnail
Description of Work This project is designed to (1) collect more frequent total suspended sediment (TSS) and total phosphorous (TP) data for the Genesee River Watershed, especially sub-watersheds at the 12-digit HUC (Hydrologic Unit code) scale, both within and outside of the AOC; and (2) to conduct a pilot study capable of evaluating the reduction in sediments and nutrients from the current and proposed GLRI non-point source reduction projects in the watershed aggregated at the 12-digit HUC. This project is envisioned as a two-year pilot for the Genesee River Watershed, with potentially wider applications in the Lake Ontario Basin and other Great Lake areas.
thumbnail
The Lakewide Management Plans (LaMPs) within the Great Lakes region are examples of broad-scale, collaborative resource-management efforts that require a sound ecosystems approach. Yet, the LaMP process is lacking a holistic framework that allows these individual actions to be planned and understood within the broader context of the Great Lakes ecosystem. To help this issue, a conceptual framework for Lake Michigan Coastal/Nearshore Ecosystems was developed to address for major LaMP goals; Can we drink the water?, Can we eat the fish?, Can we swim in the water?, Are all habitats healthy, naturally diverse, and sufficient to sustain viable biological communities?


    map background search result map search result map Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE ERIE Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE ONTARIO Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE HURON Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE MICHIGAN Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE SUPERIOR Genesee River BUI / Genesee River Watershed: TSS and TP loading collection and Pilot Project to Evaluate Aggregate BMP Effectiveness Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE ONTARIO Genesee River BUI / Genesee River Watershed: TSS and TP loading collection and Pilot Project to Evaluate Aggregate BMP Effectiveness Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE ERIE Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE MICHIGAN Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE HURON Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE SUPERIOR