Skip to main content
Advanced Search

Filters: Tags: Temporal heterogeneity (X)

2 results (52ms)   

View Results as: JSON ATOM CSV
thumbnail
In a glass house experiment, we investigated the effect of both the frequency of water pulses and the total amount of water supplied on individual performance in the absence and presence of neighbors. We used monocultures and all combinations of pairs of seedlings of three species of perennial grasses, characteristic of different points along a soil moisture gradient within a semi-arid grassland in New Mexico, USA. In the absence of neighbors, higher total water or more frequent (but smaller) pulses significantly increased growth of all three species. The species with the fastest intrinsic growth rate, and from the most productive habitat, exhibited the largest increase in absolute and relative growth in response...
The rhizosphere differs from the bulk soil in a range of biochemical, chemical and physical processes that occur as a consequence of root growth, water and nutrient uptake, respiration and rhizodeposition. These processes also affect microbial ecology and plant physiology to a considerable extent. This review concentrates on two features of this unique environment: rhizosphere geometry and heterogeneity in both space and time. Although it is often depicted as a soil cylinder of a given radius around the root, drawing a boundary between the rhizosphere and bulk soil is an impossible task because rhizosphere processes result in gradients of different sizes. For instance, because of diffusional constraints, root uptake...


    map background search result map search result map Effects of water pulsing on individual performance and competitive hierarchies in plants Effects of water pulsing on individual performance and competitive hierarchies in plants