Skip to main content
Advanced Search

Filters: Tags: The Moon and the Planets (X)

5 results (112ms)   

View Results as: JSON ATOM CSV
thumbnail
Apparently, there are two types of size-frequency distributions of small lunar craters (???1-100 m across): (1) crater production distributions for which the cumulative frequency of craters is an inverse function of diameter to power near 2.8, and (2) steady-state distributions for which the cumulative frequency of craters is inversely proportional to the square of their diameters. According to theory, cumulative frequencies of craters in each morphologic category within the steady-state should also be an inverse function of the square of their diameters. Some data on frequency distribution of craters by morphologic types are approximately consistent with theory, whereas other data are inconsistent with theory....
Categories: Publication; Types: Citation; Tags: The Moon and the Planets
thumbnail
During the Martian landings the descent engine plumes on Viking Lander 1 (VL-1) and Viking Lander 2 (VL-2) eroded the Martian surface materials. This had been anticipated and investigated both analytically and experimentally during the design phase of the Viking spacecraft. This paper presents data on erosion obtained during the tests of the Viking descent engine and the evidence for erosion by the descent engines of VL-1 and VL-2 on Mars. From these and other results, it is concluded that there are four distinct surface materials on Mars: (1) drift material, (2) crusty to cloddy material, (3) blocky material, and (4) rock. ?? 1980 D. Reidel Publishing Co.
Categories: Publication; Types: Citation; Tags: The Moon and the Planets
thumbnail
Lonar Crater is a young meteorite impact crater emplaced in Deccan basalt. Data from 5 drillholes, a gravity network, and field mapping are used to reconstruct its original dimensions, delineate the nature of the pre-impact target rocks, and interpret the emplacement mode of the ejecta. Our estimates of the pre-erosion dimensions are: average diameter of 1710 m; average rim height of 40 m (30-35 m of rim rock uplift, 5-10 m of ejected debris); depth of 230-245 m (from rim crest to crater floor). The crater's circularity index is 0.9 and is unlikely to have been lower in the past. There are minor irregularities in the original crater floor (present sediment-breccia boundary) possibly due to incipient rebound effects....
Categories: Publication; Types: Citation; Tags: The Moon and the Planets
thumbnail
The morphology and distribution of ridges and scarps on Mars in the ?? 30?? latitude belt were investigated. Two distinct types of ridges were recognized. The first is long and linear, resembling mare ridges on the Moon; it occurs mostly in plains areas. The other is composed of short, anastomosing segments and occurs mostly in ancient cratered terrain and intervening plateaus. Where ridges are eroded, landscape configurations suggest that they are located along regional structures. The age of ridges is uncertain, but some are as young as the latest documented volcanic activity on Mars. The origins of ridges are probably diverse-they may result from wrinkling due to compression or from buckling due to settling over...
Categories: Publication; Types: Citation; Tags: The Moon and the Planets
thumbnail
The bulk composition of the Moon was determined by the conditions in the solar nebula during its formation, and may be quantitatively estimated from the premise that the terrestrial planets were formed by cosmochemical processes similar to those recorded in the chondrites. The calculations are based on the Ganapathy-Anders 7-component model using trace element indicators, but incorportate improved geophysical data and petrological constraints. A model Moon with 40 ppb U, a core 2% by weight (1.8% metal with ???35% Ni and 0.2% FeS) and Mg/(Fe2++Mg)?????0.75 meets the trace element restrictions, and has acceptable density, heat flow and moment of inertia ratio. The high Ni content of the core permits low-Ti mare basalts...
Categories: Publication; Types: Citation; Tags: The Moon and the Planets