Skip to main content
Advanced Search

Filters: Tags: Tutuila Island (X)

8 results (1.2s)   

View Results as: JSON ATOM CSV
thumbnail
This data release provides flooding extent polygons based on sea-level rise and wave-driven total water levels for the coast of American Samoa's most populated islands of Tutuila, Ofu-Olosega, and Tau. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 resolution along these islands coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level rise scenarios.
This data release provides flooding extent polygons and flood depth rasters (geotiffs) based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian, Mariana, and American Samoan Islands. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10 square meter resolution along these islands’ coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level...
Categories: Data; Tags: CMHRP, Climate Change, Climatology, Coastal Processes, Coastal and Marine Hazards and Resources Program, All tags...
thumbnail
Spatial surveys of water column physical properties were acquired with a conductivity-temperature-depth (CTD) profiler for four days in February 2015 and one day in July 2015 off the north coast of the island of Tutuila, American Samoa in support of a study on the coastal circulation patterns within and in the vicinity of the National Park of American Samoa.
thumbnail
Satellite-tracked, DGPS-equipped Lagrangian surface-current drifter deployments were conducted over 12 weeks between 14 April and 7 July 2015 at various locations within and offshore of the National Park of American Samoa study area to track surface currents. The drifters internally logged their location every 1 minute, and they transmitted their positions to satellites every 5 minutes. A drogue was attached to the drifters at 1 m below sea level in order to track the currents at that depth.
thumbnail
This data release provides flood depth GeoTIFFs based on sea-level rise and wave-driven total water levels for the coast of the American Samoa’s most populated islands of Tutuila, Ofu-Olosega, and Tau. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding in the populated American Samoan Islands due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10-m2 resolution along the coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level rise scenarios.


    map background search result map search result map Conductivity-Temperature-Depth (CTD) profile data in the National Park of American Samoa, Tutuila, American Samoa, 2015 Lagrangian ocean surface drifter deployments off the National Park of American Samoa, Tutuila, American Samoa, 2015 USGS 1:24000-scale Quadrangle for Tutuila Island, AS 1989 USGS 1:24000-scale Quadrangle for Tutuila Island, AS 1989 Near-shore seawater-column measurements of excess radon (Rn-222) and water levels, Faga'alu Bay, Tutuila, American Samoa, August 2018 Projected coastal flooding depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa Projected coastal flooding extents for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa Near-shore seawater-column measurements of excess radon (Rn-222) and water levels, Faga'alu Bay, Tutuila, American Samoa, August 2018 Conductivity-Temperature-Depth (CTD) profile data in the National Park of American Samoa, Tutuila, American Samoa, 2015 Lagrangian ocean surface drifter deployments off the National Park of American Samoa, Tutuila, American Samoa, 2015 USGS 1:24000-scale Quadrangle for Tutuila Island, AS 1989 USGS 1:24000-scale Quadrangle for Tutuila Island, AS 1989 Projected coastal flooding depths for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa Projected coastal flooding extents for 1-, 20-, and 100-year return interval storms and 0.00, +0.25, +0.50, +1.00, +1.50, +2.00, and +3.00 meter sea-level rise scenarios in American Samoa