Skip to main content
Advanced Search

Filters: Tags: Tyonek Quadrangle (X) > partyWithName: Metadata manager (X)

17 results (80ms)   

View Results as: JSON ATOM CSV
thumbnail
As part of the Department of Natural Resources (DNR) effort to make final recommendations of federal land parcels to be considered for selection by the State of Alaska according to provisions of the Statehood Act, a decision was made to identify and evaluate potential access corridors. Corridor maps were compiled for a total of 78 quadrangles throughout Alaska. This map suite shows relevant geologic information at a scale of 1:250,000 for 10-mile-wide corridors straddling centerlines for proposed access routes throughout Alaska. The maps are based on geologic data compiled from existing, published mapping. Each compiled corridor geology map was used to derive maps of potential construction materials, data quality,...
Tags: Alaska, State Of, Ambler River Quadrangle, Anchorage Quadrangle, Aufeis, Avalanche, All tags...
thumbnail
Alaska Division of Oil and Gas personnel collected and interpreted various data sources related to the interpretation of the Base Tertiary unconformity surface in the Cook Inlet Basin, Alaska.Data sources included public literature, public well data information (from the AOGCC-Alaska Oil and Gas Conservation Commission), a palynology database (Greater Cook Inlet Stratigraphic Palynology Control Database and Stud,Zippi, P.A., 2006) and over 2000 miles of 2D marine seismic data (CI-88 and CI-89 licensed from, and complements of, CGGVeritas.) Interpreted formation tops of the Base Tertiary unconformity are tabulated on the map.
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
The State of Alaska Division of Geological & Geophysical Surveys (DGGS) and Division of Oil & Gas (DOG) are currently engaged in a multi-year study of the hydrocarbon potential of the Tertiary and Mesozoic strata in Cook Inlet basin. Modal analyses and routine core analyses were performed on Tertiary and Mesozoic siltstones and sandstones collected during the 2007-2010 field seasons from six geographic areas in upper and lower Cook Inlet. The reservoir quality of Cook Inlet sandstones varies widely depending on their mineralogy, geologic age, burial depth, and depositional environment. Tuxedni and Naknek sandstones have poor reservoir quality and are likely to be of equally poor quality down dip. West Foreland sandstones...
Tags: Aleutian Arc, Beluga Basin, Bluff Point, Capps Glacier, Chert, All tags...
thumbnail
The State of Alaska Division of Geological & Geophysical Surveys (DGGS) is currently engaged in a multi-year study of the hydrocarbon potential of the Tertiary and Mesozoic strata in Cook Inlet basin. This report summarizes mercury injection capillary pressure (MICP) data for 38 outcrop samples collected from the Tyonek, Beluga, and West Foreland Formations in the Tyonek and Talkeetna quadrangles. All samples were collected from measured stratigraphic sections. The Tyonek Formation samples have unimodal pore systems and the majority have well defined to sharp intrusion profiles. The Beluga Formation samples are characterized by unimodal pore systems and relatively broad intrusion profiles. The West Foreland Formation...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
The palynological samples included in this report were collected as part of the Alaska Department of Natural Resources' (Alaska Division of Geological & Geophysical Surveys (DGGS) and Alaska Division of Oil & Gas (DOG)) Cook Inlet Basin Analysis program. The focus of this program is to evaluate the stratigraphic trap potential and reservoir quality of coal-bearing Cenozoic strata in upper Cook Inlet basin and the reservoir quality of Mesozoic strata throughout the basin. The samples included in this report were collected in the Tyonek, Kenai, and Seldovia Quadrangles from September 2006 through July 2010. All samples in this report were processed by Russ Harms in Medicine Toenail Alberta, Canada. Prepared slides...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...


    map background search result map search result map Survey of geology, geologic materials, and geologic hazards in proposed access corridors in selected quadrangles, Alaska Petrology and reservoir potential of Tertiary and Mesozoic sandstones, Cook Inlet, Alaska: A preliminary analysis of outcrop samples collected during 2007-2010 field seasons High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska Palynological analysis of 228 outcrop samples from the Kenai, Seldovia, and Tyonek quadrangles, Cook Inlet region, Alaska Mercury injection capillary pressure (MICP) results from outcrop samples in the Tyonek, Beluga, and West Foreland Formations, Tyonek and Talkeetna quadrangles, Alaska Top Mesozoic unconformity depth map of the Cook Inlet Basin, Alaska Mercury injection capillary pressure (MICP) results from outcrop samples in the Tyonek, Beluga, and West Foreland Formations, Tyonek and Talkeetna quadrangles, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska Palynological analysis of 228 outcrop samples from the Kenai, Seldovia, and Tyonek quadrangles, Cook Inlet region, Alaska Petrology and reservoir potential of Tertiary and Mesozoic sandstones, Cook Inlet, Alaska: A preliminary analysis of outcrop samples collected during 2007-2010 field seasons Top Mesozoic unconformity depth map of the Cook Inlet Basin, Alaska Survey of geology, geologic materials, and geologic hazards in proposed access corridors in selected quadrangles, Alaska