Skip to main content
Advanced Search

Filters: Tags: Upper Mississippi River (X)

270 results (15ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo, Illinois to Minneapolis, Minnesota. These data were published as a series of 89 survey maps and index. In the 1990's, the Upper Midwest Environmental Sciences Center (UMESC) in conjunction with the US Army Corps of Engineers Upper Mississippi River Restoration- Environmental Management Program -- Long Term Resource Monitoring Program element (LTRMP) for the Upper Mississippi River automated the maps' land cover/use symbology to create a turn of the century/pre-impoundment land cover/use data set. Other data on the maps that were not automated include; elevation...
This dataset consists of digital scans of color infrared aerial photography from the Upper Mississippi River collected in 1975.
This dataset consists of digital scans of color infrared aerial photography from the Upper Mississippi River System collected in 2000.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
The data set includes delineation of sampling strata for the six study reaches of the UMRR Program’s LTRM element. Separate strata coverages exist for each of the three monitoring components (fish, vegetation, and water quality) to meet the differing sampling needs among components. Generally, the sampling strata consist of main channel, side channel, backwater, and impounded areas. The fish component further delineates a “shoreline” portion of the strata to be used for sampling gears deployed only along the shoreline. The data are raster in origin, with the center of each pixel representing the sampling location. Cell size is typically 50 meters, although several water quality strata are at 200 meter cell size.
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
This dataset consists of digital scans of color infrared aerial photography from the Upper Mississippi River System collected in 2000.
This dataset consists of digital scans of color infrared aerial photography from the Upper Mississippi River System collected in 1994.
Transects in backwaters of Navigation Pools 4 and 8 of the Upper Mississippi River (UMR) were established in 1997 to measure sedimentation rates. Annual surveys were conducted from 1997-2002 and then some transects surveyed again in 2017-18. Changes and patterns observed were reported on in 2003 for the 1997-2002 data, and a report summarizing changes and patterns from 1997-2017 will be reported on at this time. Several variables are recorded each survey year and placed into an Excel spreadsheet. The spreadsheets are read with a SAS program to generate a SAS dataset used in SAS programs to determine rates, depth loss, and associations between depth and change through regression.
This dataset consists of digital scans of color infrared aerial photography from the Upper Mississippi River collected in 1975.
This dataset consists of digital scans of color infrared aerial photography from the Upper Mississippi River collected in 1975.
Aerial photographs for Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial photographs for Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. All CIR aerial photos were orthorectified, mosaicked, compressed, and served via the UMESC Internet site. The CIR aerial photos were interpreted and automated using a 31-class LTRMP vegetation classification. The 2010/11 LCU databases were prepared by or under the supervision...
thumbnail
This dataset contains predictions of habitat suitability of reed canarygrass (Phalaris arundinacea) in Upper Mississippi River floodplain forest understories from Pool 3 to Pool 13. Predictions were created using three machine learning algorithms (Bayesian additive regression trees, boosted trees, and random forest). This dataset contains rasters that provide habitat suitability predictions for each 12m raster cell that had forested landcover in 2010. In addition to one raster for each of the three algorithms an ensemble (mean prediction of all three algorithms) prediction raster for each pool is provided. The presence/absence observations used to train the model are contained in a .csv file with each plot location....
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo, Illinois to Minneapolis, Minnesota. These data were published as a series of 89 survey maps and index. In the 1990's, the Upper Midwest Environmental Sciences Center (UMESC) in conjunction with the US Army Corps of Engineers Upper Mississippi River Restoration- Environmental Management Program -- Long Term Resource Monitoring Program element (LTRMP) for the Upper Mississippi River automated the maps' land cover/use symbology to create a turn of the century/pre-impoundment land cover/use data set. Other data on the maps that were not automated include; elevation...


map background search result map search result map UMRS LTRMP 2010/11 LCU Mapping -- Mississippi River Navigation Pool 22 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 19 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 20 LTRM Fish Sampling Strata UMRR Pool 15 Topobathy UMRR Pool 16 Topobathy UMRR Mississippi River Open River North Bathymetry Footprint UMRR Mississippi River Navigation Pool 04 Bathymetry Footprint UMRR Mississippi River Navigation Pool 20 Bathymetry Footprint UMRR Mississippi River Navigation Pool 24 Bathymetry Footprint UMRS Floodplain Inundation Attributes - Pool 22 UMRS Floodplain Inundation Attributes - Pool 25 Backwater Sedimentation in Navigation Pools 4 and 8 of the Upper Mississippi River data Estimates of habitat suitability of reed canarygrass (Phalaris arundinacea) in Upper Mississippi River floodplain forest understories (ver. 2.0, February 2024) UMRR Pool 15 Topobathy UMRR Mississippi River Navigation Pool 20 Bathymetry Footprint 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 20 UMRR Pool 16 Topobathy UMRR Mississippi River Navigation Pool 24 Bathymetry Footprint UMRS Floodplain Inundation Attributes - Pool 22 UMRS Floodplain Inundation Attributes - Pool 25 UMRR Mississippi River Navigation Pool 04 Bathymetry Footprint 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 19 UMRR Mississippi River Open River North Bathymetry Footprint Backwater Sedimentation in Navigation Pools 4 and 8 of the Upper Mississippi River data UMRS LTRMP 2010/11 LCU Mapping -- Mississippi River Navigation Pool 22 Estimates of habitat suitability of reed canarygrass (Phalaris arundinacea) in Upper Mississippi River floodplain forest understories (ver. 2.0, February 2024) LTRM Fish Sampling Strata