Skip to main content
Advanced Search

Filters: Tags: Upper Rio Grande (X) > partyWithName: U.S. Forest Service (X)

2 results (52ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
We propose to identify future risk of wildlife population decline for species inhabiting the Rio Grande, New Mexico. Specifically, we will examine and quantify the interactive effect of fire and climate change on the presence and long-term persistence of native and nonnative species in residing within Rio Grande riparian and wetland habitats. We will build upon recent species vulnerability assessment work conducted for the Rio Grande and incorporate new data and model output regarding fire behavior under different climate scenarios. Predictions for future species distributions will be coupled with scores representing species adaptive capacity to quantify vulnerability to changing climate and disturbance regimes....
thumbnail
Rivers in the SRLCC differ from one another in flow characteristics, levels of regulation, and vulnerability to wildfire; characteristics that will be influenced by climate change (Seager et al. 2007, Mortiz et al. 2012). An understanding of how changes in streamflow and wildfire frequency will affect structure of live and dead woody vegetation is needed to for managers assess the vulnerability of riparian obligate species to climate change. We are developing stochastic transition models for cottonwood trees and snags along the Middle Rio Grande by modifying Lytle and Merritts (2004) stage-structured cottonwood population model. By incorporating influences of flood and wildfire into stage transition rates, we can...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Conservation NGOs, Cultural Resources, Decision Support, EARTH SCIENCE > LAND SURFACE > LANDSCAPE, Federal resource managers, All tags...


    map background search result map search result map Modeling Woody Plant Regeneration and Debris Accumulation under Future Streamflow and Wildfire Scenarios in the SRLCC Vulnerability of Riparian Obligate Species in the Rio Grande to the Interactive Effects of Fire, Hydrological Variation and Climate Change Modeling Woody Plant Regeneration and Debris Accumulation under Future Streamflow and Wildfire Scenarios in the SRLCC (Not listed in the LCC Science Catalog due to Desert LCC co-funding and catalog administering) Modeling Woody Plant Regeneration and Debris Accumulation under Future Streamflow and Wildfire Scenarios in the SRLCC Vulnerability of Riparian Obligate Species in the Rio Grande to the Interactive Effects of Fire, Hydrological Variation and Climate Change Modeling Woody Plant Regeneration and Debris Accumulation under Future Streamflow and Wildfire Scenarios in the SRLCC (Not listed in the LCC Science Catalog due to Desert LCC co-funding and catalog administering)