Skip to main content
Advanced Search

Filters: Tags: Water, Coasts and Ice (X) > Extensions: Expando (X)

31 results (52ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Resource managers, policymakers, and scientists require tools to inform water resource management and planning. Information on hydrologic factors – such as streamflow, snowpack, and soil moisture – is important for understanding and predicting wildfire risk, flood activity, and agricultural and rangeland productivity, among others. Existing tools for modeling hydrologic conditions rely on information on temperature and precipitation. This project sought to evaluate different methods for downscaling global climate models – that is, taking information produced at a global scale and making it useable at a regional scale, in order to produce more accurate projections of temperature and precipitation for the Pacific...
thumbnail
The Gulf of Alaska is one of the most productive marine ecosystems on Earth, supporting salmon fisheries that alone provide nearly $1 billion per year in economic benefits to Southeast Alaska. Glaciers are central to many of the area’s natural processes and economic activities, but the rates of glacier loss in Alaska are among the highest on Earth, with a 26-36 percent reduction in total volume expected by the end of the century. This project brought together scientists and managers at a workshop to synthesize the impacts of glacier change on the region’s coastal ecosystems and to determine related research and monitoring needs. Collected knowledge shows that melting glaciers are expected to have cascading effects...
thumbnail
The Integrated Scenarios of the Future Northwest Environment project (an FY2012 NW CSC funded project), resulted in several datasets describing projected changes in climate, hydrology and vegetation for the 21st century over the Northwestern US. The raw data is available in netCDF format, which is a standard data file format for weather forecasting/climate change/GIS applications. However, the sheer size of these datasets and the specific file format (netCDF) for data access pose significant barriers to data access for many users. This is a particular challenge for many natural/cultural resource managers and others working on conservation efforts in the Pacific Northwest. The goal of this project was to increase...
thumbnail
The rugged landscapes of northern Idaho and western Montana support biodiverse ecosystems, and provide a variety of natural resources and services for human communities. However, the benefits provided by these ecosystems may be at risk as changing climate magnifies existing stressors and allows new stressors to emerge. Preparation for and response to these potential changes can be most effectively addressed through multi-stakeholder partnerships, evaluating vulnerability of important resources to climate change, and developing response and preparation strategies for managing key natural resources in a changing world. This project supports climate-smart conservation and management across forests of northern Idaho...
thumbnail
As the impacts of climate change amplify, understanding the consequences for wetlands will be critical for their sustainable management and conservation, particularly in arid regions such as the Columbia Plateau. The depressional wetlands in this region (wetlands located in topographic depressions where water can accumulate) are an important source of surface water during the summer months. However, their health depends directly on precipitation and evaporation, making them susceptible to changes in temperature and precipitation. Yet few tools for monitoring water movement patterns (hydrology) in and out of these landscapes currently exist, hindering efforts to model how they are changing. This project provided...
thumbnail
Climate change is projected to cause earlier and less snowmelt, potentially reducing water availability for terrestrial and aquatic ecosystems and for municipal and agricultural water supplies. However, if forested landscapes can be managed to retain snow longer, some of these environmental and financial impacts may be mitigated. Results from our research team demonstrate that in the Pacific Northwest (PNW), opening dense forest canopies through creating forest gaps will generally lead to more snow accumulation and later melt (i.e., up to 13 weeks later). However, under certain conditions, such as locations on ridges with high wind speeds and sunny south-facing slopes, the snow that accumulated in the forest is...
thumbnail
For thousands of years, Pacific lamprey and Pacific eulachon have been important traditional foods for Native American tribes of the Columbia River Basin and coastal areas of Oregon and Washington. These fish have large ranges – spending part of their lives in the ocean and part in freshwater streams – and they require specific environmental conditions to survive, migrate, and reproduce. For these reasons, Pacific lamprey and Pacific eulachon are likely threatened by a variety of climate change impacts to both their ocean and freshwater habitats. However, to date, little research has explored these impacts, despite the importance of these species to tribal communities. This project will evaluate the effects of...
thumbnail
The Colorado River is the dominant water source for the southwestern United States, crossing through seven states before reaching Mexico. The river supplies water to approximately 36 million people, irrigates nearly six million acres of farmland within and beyond the basin, and contributes an estimated 26 billion dollars each year to the region’s recreational economy. Yet the Colorado River’s water supply is already fully allocated, meaning that the economic and environmental health of the region is closely tied to the river’s streamflow. Climate projections for the Southwest show a future marked by chronic drought and substantial reductions in streamflow. The region has already been impacted by climate change,...
thumbnail
This project links climate, hydrological, and ecological changes over the next 30 years in a Great Basin watershed. In recent years, climate variability on annual and decadal time scales has been recognized as greater than commonly perceived with increasing impacts on ecosystems and available water resources. Changes in vegetation distribution, composition and productivity resulting from climate change affect plant water use, which in turn can alter stream flow, groundwater and eventually available water resources. To better understand these links, project researchers implemented two computer-based numeric models in the Cleve Creek watershed in the Schell Creek Range, east of Ely, Nevada. The application of the...
Categories: Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2013, CASC, Cleve Creek, Climate, Completed, All tags...
thumbnail
The goal of this project was to: (a) archive the relevant AR5 model output data for the southwest region; (b) downscale daily temperature and precipitation to 12 X 12 km cell spatial resolution over the Southwest; (c) assess the precision (degree of agreement) of the simulated models; (d) assess the direction and magnitude of change in projections between AR4 and AR5, as well as assess projections of key extreme climatic events (i.e., extreme drought, extreme seasonal precipitation, extreme high and low temperature events); and (e) assess critical ecosystem impacts (i.e., climate water deficit and fire; hydrological condition of major river systems; impacts on highly valued species).
thumbnail
In California, the near-shore area where the ocean meets the land is a highly productive yet sensitive region that supports a wealth of wildlife, including several native bird species. These saltmarshes, mudflats, and shallow bays are not only critical for wildlife, but they also provide economic and recreational benefits to local communities. Today, sea-level rise, more frequent and stronger storms, saltwater intrusion, and warming water temperatures are among the threats that are altering these important habitats. To support future planning and conservation of California’s near-shore habitats, researchers examined current weather patterns, elevations, tides, and sediments at these sites to see how they affect...
Categories: Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, Bolinas Lagoon, CA, CASC, California, All tags...
thumbnail
Climate change is one of the most pressing issues facing resource management. The disruptions it is causing require that we change the way we consider management in order to ensure the future of habitats, species, and human communities. Practitioners often struggle with how to identify and prioritize specific climate adaptation actions (CAAs). Management actions may have a higher probability of being successful if they are informed by available scientific knowledge and findings. The goal of the Available Science Assessment Process (ASAP) was to synthesize and evaluate the body of scientific knowledge on specific, on-the-ground CAAs to determine the conditions, timeframes, and geographic areas where particular CAAs...
thumbnail
While home to many people and a rich diversity of unique plant and animal life, the U.S. territories of Guam and American Samoa are especially vulnerable to the effects of climate change because of their small size, geographical remoteness, and exposure to threats such as sea-level rise and increased storm surge. Developing predictions of future conditions is often the first step in helping decision makers and communities plan for change. However, to date, available global climate models have been too coarse in resolution to be useful for planning in the context of small, isolated islands. This project produced the first-ever set of high-resolution climate projections for Guam and American Samoa, providing information...
thumbnail
This project was designed to use the combined strengths of the cooperators to address their concerns stemming from the degradation of arid environments in the Great Basin. The project aimed to identify the regional ecological and social costs and benefits of both immediate hydrologic modifications (low-profile constructed dams) and longer-term restoration of beavers (Castor canadensis) to these landscapes. Use of these techniques by ranchers and managers of public lands depends on these costs and benefits as well as social context and attitudes; the project aimed to assess these as well. Finally, implementation of hydrologic modifications depends on communication of benefits and costs to stakeholders who may choose...
thumbnail
Many fish species, including mountain whitefish and bull trout, need a variety of habitat types throughout their different life stages that include appropriate water temperatures, flows, refugia from predators, and adequate food. Key to a fish finding and using these different habitats is the connectivity between them. Changing conditions in the future, including increased air and water temperatures, are expected to impact many fish populations, as well as the rivers, streams, and habitats where they’re found. This project, jointly funded by the Great Northern Landscape Conservation Cooperative, focused on the Methow River Basin in the arid east-central part of Washington State. The project team used data on fish...
thumbnail
Native Americans are one of the most vulnerable populations to climate change in the United States because of their reliance upon the natural environment for food, livelihood, and cultural traditions. In the Southwest, where the temperature and precipitation changes from climate change are expected to be particularly severe, tribal communities may be especially vulnerable. Through this project, researchers sought to better understand the climate change threats facing the Pyramid Lake Paiute Tribe of northwestern Nevada. Researchers found that the Tribe’s vulnerability to climate change stems from its dependence on Pyramid Lake, which may experience reduced water supply in the future. This will potentially have negative...
Categories: Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, CASC, Completed, Federal, Fish, All tags...
thumbnail
The project aimed to use existing models and data to understand how wildfires (number, size, and location) and land-use change will affect watersheds, and therefore water supply, under current conditions and future climates (through 2050) in the western U.S. The projected changes in temperature and precipitation are expected to affect water supply in two major ways: 1) decreased water availability, and 2) increased risk to watersheds via loses from fire. As the western population is projected to grow by 310 million people by 2100, this will potentially increase demand for diminishing supplies if housing growth occurs in rangelands or forested lands. Understanding watershed vulnerabilities due to changing climate,...
thumbnail
The purpose of this project was to (1) provide an internally-­consistent set of downscaled projections across the western U.S., (2) include information about projection uncertainty, and (3) assess projected changes of hydrologic extremes. These objectives were designed to address decision support needs for climate adaptation and resource management actions. Specifically, understanding of uncertainty in climate projections - in particular for extreme events - is currently a key scientific and management barrier to adaptation planning and vulnerability assessment. The new dataset fills in the Northwest domain to cover a key gap in the previous dataset, adds additional projections (both from other global climate models...
thumbnail
The bull trout, listed as threatened under the Endangered Species Act, is well adapted to the cold waters of the Northwest. Recent changes in climate have caused winter flooding and warmer summer water temperatures in the region, reducing the cold-water habitats that bull trout depend on. The southernmost bull trout populations, found in Oregon, Washington, Idaho, Montana, and Nevada, are currently restricted to small reserves where the coldest waters still exist. These shrinking habitats have created a severed environment being further split by dams, poor water quality, and invasive species. The goal of this project was to determine how these factors threaten the species regionally by using predictions of stream...
thumbnail
The objective of this study was to determine why certain stream insects tend to be found in certain temperature ranges. Many federal, state and local agencies use stream insects to monitor the health of freshwater ecosystems. While the temperature ranges for some insects are often inferred from the temperature of the waters where they were collected, this inference is coarse at best and problematic at worst. Stream temperatures fluctuate a lot during the year and temperature may or may not control where an insect lives. Field insects were collected and sent to a laboratory for testing several temperature endpoints, particularly at higher temperatures. Respiration, breathing rate, and some physical activities were...


map background search result map search result map Understanding Future Extreme Water Events in the Pacific Northwest and Related Uncertainties to Inform Assessments of Vulnerability Identification and Laboratory Validation of Temperature Tolerance for Macroinvertebrates: Developing Vulnerability Prediction Tools Rangewide Climate Vulnerability Assessment for Threatened Bull Trout Climate Change Threats to Fish Habitat Connectivity Improving Projections of Hydrology in the Pacific Northwest 21st Century High-Resolution Climate Projections for Guam and American Samoa Climate Change Vulnerability of the Pyramid Lake Paiute Tribe in the Southwest Assessment of Available Climate Models and Projections for the Southwest Region From Icefield to Ocean: Glacier Change Impacts to Alaska’s Coastal Ecosystems Effects of Sea-Level Rise and Extreme Storms on California Coastal Habitats: Part 1 Projecting Future Streamflow in the Colorado River Basin Understanding and Projecting Changes in Climate, Hydrology, and Ecology in the Great Basin for the Next 30 Years Assessing Climate Change Impacts on Pacific Lamprey and Pacific Eulachon Changes to Watershed Vulnerability under Future Climates, Fire Regimes, and Population Pressures Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Forest Management Tools to Maximize Snow Retention under Climate Change An Interagency Collaboration to Develop and Evaluate New Science-Based Strategies for Great Basin Watershed Restoration in the Future Integrated Scenarios Tools: Improving the Accessibility of the Integrated Scenarios Data The Available Science Assessment Process (ASAP) Continued: Evaluating Adaptation Actions for Sea-Level Rise and Coastal Change in the Pacific Northwest Can We Conserve Wetlands Under a Changing Climate? Mapping Wetland Hydrology in the Columbia Plateau Understanding and Projecting Changes in Climate, Hydrology, and Ecology in the Great Basin for the Next 30 Years Climate Change Threats to Fish Habitat Connectivity Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Can We Conserve Wetlands Under a Changing Climate? Mapping Wetland Hydrology in the Columbia Plateau The Available Science Assessment Process (ASAP) Continued: Evaluating Adaptation Actions for Sea-Level Rise and Coastal Change in the Pacific Northwest Effects of Sea-Level Rise and Extreme Storms on California Coastal Habitats: Part 1 An Interagency Collaboration to Develop and Evaluate New Science-Based Strategies for Great Basin Watershed Restoration in the Future Forest Management Tools to Maximize Snow Retention under Climate Change Integrated Scenarios Tools: Improving the Accessibility of the Integrated Scenarios Data Rangewide Climate Vulnerability Assessment for Threatened Bull Trout Projecting Future Streamflow in the Colorado River Basin Assessing Climate Change Impacts on Pacific Lamprey and Pacific Eulachon Assessment of Available Climate Models and Projections for the Southwest Region Improving Projections of Hydrology in the Pacific Northwest From Icefield to Ocean: Glacier Change Impacts to Alaska’s Coastal Ecosystems Identification and Laboratory Validation of Temperature Tolerance for Macroinvertebrates: Developing Vulnerability Prediction Tools Changes to Watershed Vulnerability under Future Climates, Fire Regimes, and Population Pressures Understanding Future Extreme Water Events in the Pacific Northwest and Related Uncertainties to Inform Assessments of Vulnerability 21st Century High-Resolution Climate Projections for Guam and American Samoa