Skip to main content
Advanced Search

Filters: Tags: Water Budget (X) > Date Range: {"choice":"year"} (X)

82 results (77ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled ACCESS 1.0 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled Global Climate Models (GCMs) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The 20 future climate scenarios consist of ten GCMs with RCP 4.5 and 8.5 each: ACCESS 1.0, CanESM2, CCSM4, CESM1-BGC, CMCC-CMS, CNRM-CM5, GFDL-CM3, HadGEM2-CC, HadGEM2-ES, and MIROC5. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme...
thumbnail
The integrated hydrologic-flow model, called the Osage Nation Integrated Hydrologic Model (ONIHM) was developed to assess water availability in the Osage Nation. This model was developed using the MODFLOW-One Water Hydrologic Model (MF-OWHM) code. The ONIHM was discretized into an orthogonal grid of 276 rows and 289 columns, and each grid cell measured 1,312.34 feet (ft) per side, with eight variably thick vertical layers that represented the alluvial and bedrock aquifers within the study area, including the Vamoosa-Ada aquifer and other minor bedrock aquifers deposited during the Pennsylvanian Period. The ONIHM was delineated into 128 water-balance subregions based on surface watersheds, land cover, and water supply...
thumbnail
The U.S. Geological Survey (USGS) developed a systematic, quantitative approach to prioritize candidate basins that can support the assessment and forecasting objectives of the major USGS water science programs. Candidate basins were the level-4 hydrologic units (HUC4) with some of the smaller HUC4s being combined (hereafter referred to as modified HUC4 basins). Candidate basins for the contiguous United States (CONUS) were grouped into 18 hydrologic regions. Thirty-three geospatial variables representing land use, climate change, water use, water-balance components, streamflow alteration, fire risk, and ecosystem sensitivity were initially considered to assist in ranking candidate basins for study. The two highest...
This community serves to document data and analysis collected by researchers within the Upper Midwest Water Science Center whose mission is to collect high-quality hydrologic data and conduct unbiased, scientifically sound studies of water resources within the Great Lakes and Upper Mississippi Basins. We strive to meet the changing needs of those who use our information—from the distribution, availability, and quality of our water resources to topic-oriented research that addresses current hydrological issues.
thumbnail
These data were compiled for/to modeling efforts for U.S. Bureau of Reclamation National Environmental Policy Act (NEPA) analyses for the Colorado River in Grand Canyon, Arizona. Objective(s) of our study were to create revised monthly Lake Powell elevations and outflows from Bureau of Reclamation Colorado River Mid-term Modeling System (CRMMS) traces that incorporate the alternatives in the sEIS documents and indicate when potential actions may occur and how that changes water movement and storage. These data represent monthly hydrologies for Lake Powell: inflow, outflow, and elevation forecasts for 2024-2027, as well as volumes of water in outflows for different water mangement strategies in NEPA supplemental...
thumbnail
Final Report - Executive Summary: This final project report is prepared to summarize the research project titled “Assessing evapotranspiration rate changes for proposed restoration of the forested uplands of the Desert Landscape Conservation Cooperatives (LCC)” for the Desert LCC of the Bureau of Reclamation as a requirement for closing out the project. This report includes the scope of work, summary of research project, results, and conclusions.Among all of the components of the terrestrial water cycle, evapotranspiration (ET) consumes the largest amount of water. Accurate estimation of ET is very important to understand the influence of ET to the hydrologic response of recharge and runoff processes in the water...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, ATMOSPHERE, ATMOSPHERE, ATMOSPHERIC WATER VAPOR, ATMOSPHERIC WATER VAPOR, All tags...
thumbnail
A sensitivity analysis of groundwater-recharge estimates from a water-budget model was completed for the islands of Oahu and Maui, Hawaii (Johnson and others, 2023). Results of the sensitivity analysis were used to quantify the relative importance of selected model parameters to recharge estimates for three moisture zones (dry, mesic, and wet) on Oahu and Maui. This shapefile contains the boundaries of the moisture zones and boundaries of the model subareas that were used in the model simulations for Oahu. The shapefile attribute information includes the names of the land-cover types assigned to model subareas and the mean annual recharge values determined for the model subareas for the baseline scenario of the...
thumbnail
An integrated hydrologic-flow model, called the Central Platte Integrated Hydrologic Model, was constructed using the MODFLOW-One-Water Hydrologic Model code with the Newton solver. This code integrates climate, landscape, surface water, and groundwater-flow processes in a fully coupled approach. This study provided the Central Platte Natural Resources District (CPNRD) with an advanced numerical modeling tool to assist with the update of their Groundwater Management Plan by providing them information on modeled future GW levels under different climate scenarios and management practices. This tool will allow the CPNRD to evaluate other scenarios as management changes in the future. A predevelopment model simulated...
thumbnail
This digital dataset consists of monthly climate data from the Basin Characterization Model v8 (BCMv8) for the updated Central Valley Hydrologic Model (CVHM2) for water years 1922 to 2019. The BCMv8 data are available in a separate data release titled "The Basin Characterization Model - A regional water balance software package (BCMv8) data release and model archive for hydrologic California, water years 1896-2020". The data were modified by: (1) extracting the data from the data source for the relevant model domain and times, and (2) rescaling the 270-meter BCMv8 grid to the small watersheds that contribute boundary flow to the CVHM2 model for the hydrologic variables recharge and runoff. The three data pieces...
We enhanced the agro-hydrologic VegET model to include snow accumulation and melt processes and the separation of runoff into surface runoff and deep drainage. Driven by global weather datasets and parameterized by land surface phenology (LSP), the enhanced VegET model was implemented in the cloud to simulate daily soil moisture (SM), actual evapotranspiration (ETa), and runoff (R) for the conterminous United States (CONUS) and the Greater Horn of Africa (GHA). Evaluation of the VegET model with independent data showed satisfactory performance, capturing the temporal variability of SM (Pearson correlation r: 0.22–0.97), snowpack (r: 0.86–0.88), ETa (r: 0.41–0.97), and spatial variability of R (r: 0.81–0.90). Absolute...
thumbnail
This data release contains monthly 270-meter gridded Basin Characterization Model (BCMv8) climate inputs and hydrologic outputs for Santa Clara River Valley South Bay (SCVSB). Gridded climate inputs include: precipitation (ppt), minimum temperature (tmn), maximum temperature (tmx), and potential evapotranspiration (pet). Gridded hydrologic variables include: actual evapotranspiration (aet), climatic water deficit (cwd), snowpack (pck), recharge (rch), runoff (run), and soil storage (str). The units for temperature variables are degrees Celsius, and all other variables are in millimeters. Monthly historical variables from water years 1896 to 2019 are summarized into water year files and long-term average summaries...
thumbnail
Background The North Atlantic Coastal Plain (NACP) covers a land area of approximately 34,000 mi 2 along the eastern seaboard of the United States from Long Island, N.Y., southward to the northern portion of North Carolina. This area is underlain by a thick wedge of sedimentary deposits that form a complex groundwater system in which the sands and gravels function as confined aquifers, and the silts and clays function as confining units. These confined aquifers of the NACP constitute a major source of water for public and domestic supply for the nearly 27 million people living in the region, as well as being important source of water for industrial and agricultural purposes. Increases in population and changes...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Cooperative Water Program, Delaware, Focused Assessments, Focused Assessments, Focused Assessments, All tags...
thumbnail
This data release contains monthly 270-meter gridded Basin Characterization Model (BCMv8) climate inputs and hydrologic outputs for Klamath (KL). Gridded climate inputs include: precipitation (ppt), minimum temperature (tmn), maximum temperature (tmx), and potential evapotranspiration (pet). Gridded hydrologic variables include: actual evapotranspiration (aet), climatic water deficit (cwd), snowpack (pck), recharge (rch), runoff (run), and soil storage (str). The units for temperature variables are degrees Celsius, and all other variables are in millimeters. Monthly historical variables from water years 1896 to 2019 are summarized into water year files and long-term average summaries for water years 1981-2010. Four...
thumbnail
A sensitivity analysis of groundwater-recharge estimates from a water-budget model was completed for the islands of Oahu and Maui, Hawaii (Johnson and others, 2023). Results of the sensitivity analysis were used to quantify the relative importance of selected model parameters to recharge estimates for three moisture zones (dry, mesic, and wet) on Oahu and Maui. These shapefiles contain the boundaries of the moisture zones and boundaries of the model subareas that were used in the model simulations for Oahu and Maui. Attributes in the shapefiles include the names of the land-cover types assigned to model subareas and the mean annual recharge values determined for the model subareas for the baseline scenario of the...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled GFDL-CM3 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the fifth...
thumbnail
Groundwater levels have declined since the 1940s in the Wailuku area of central Maui, Hawaiʻi, on the eastern flank of West Maui volcano, mainly in response to increased groundwater withdrawals. Available data since the 1980s also indicate a thinning of the freshwater lens and an increase in chloride concentrations of pumped water from production wells. These trends, combined with projected increases in demand for groundwater in central Maui, have led to concerns over groundwater availability and have highlighted a need to improve understanding of the hydrologic effects of proposed groundwater withdrawals in the Waiheʻe, ʻĪao, and Waikapū areas of central Maui. A three-dimensional, variable-density solute-transport...
thumbnail
In 2009, the Kentucky Water Science Center completed the Water Availability Tool for Environmental Resources (WATER-KY), which provided the ability to simulate streamflow for the period 1980-2000. This model integrated TOPMODEL (Beven and Kirkby, 1979) for pervious portions of the landscape with simulation of flow generated from impervious surfaces (USDA, 1986). Associated products included a flow-duration curve, load-duration curves when water-quality data were available, and general water balance. WATER-KY required a dedicated ArcGIS license with the Spatial Analyst extension, which made it difficult to use for some cooperators and limited integration with other hydrologic approaches. This new version translates...
thumbnail
These data were compiled for modeling efforts of Bureau of Reclamation National Environmental Policy Act (NEPA) analyses for the Colorado River in Grand Canyon, Arizona. Objective(s) of our study were to forecast water temperature, smallmouth bass population growth rate, and smallmouth bass entrainment rates under different water management scenarios. These data represent forecasted smallmouth bass entrainment rates and smallmouth bass population growth rates. Data were collected in 2023 and 2024 by the Bureau of Reclamation CRMMS and then used by the U.S. Geological Survey-Southwest Biological Science Center-Grand Canyon Monitoring & Research Center in the modeling process. These data can be used to evaluate different...
thumbnail
This data release supports the study by Sexstone and others (2019) and contains simulation output from a hydrological modeling experiment using a specific calibration of the conterminous United States (CONUS) application of the Precipitation-Runoff Modeling System (PRMS) (Hay, 2019) as implemented in the National Hydrologic Model (NHM) infrastructure (Regan and others, 2018). The by hydrologic response unit (byHRU) calibrated, baseline version of the NHM-PRMS (Hay, 2019) was used to evaluate the sensitivity of simulated runoff to the representation of snow depletion curves (SDCs) within the NHM-PRMS across the CONUS. The model experiment consisted of seven NHM-PRMS model simulations using the calibrated NHM-PRMS...


map background search result map search result map Groundwater Availability of the Northern Atlantic Coastal Plain Report and Publications: Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC Upper Midwest Water Science Center Data release in support of runoff sensitivity to snow depletion curve representation within a continental scale hydrologic model Water Availability Tool for Environmental Resources for the Commonwealth of Kentucky updated for 2019 Santa Clara River Valley South Bay Monthly BCMv8 Klamath Monthly BCMv8 Future Climate and Hydrology from Twenty Localized Constructed Analog (LOCA) Scenarios and the Basin Characterization Model (BCMv8) Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model ACCESS 1.0 Central Valley Hydrologic Model version 2 (CVHM2): Small Watershed Climate Data (Recharge, Runoff) MODFLOW-One Water Hydrologic Model integrated hydrologic-flow model used to evaluate water availability in the Osage Nation MODFLOW-One-Water model used to support the Central Platte Natural Resources District Groundwater Management Plan SUTRA model used to evaluate long-term groundwater availability in the Waihe'e, 'Īao, and Waikapū aquifer systems, Maui, Hawaiʻi Data used to prioritize the selection of river basins for intensive monitoring and assessment by the U.S. Geological Survey Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the islands of Oahu and Maui, Hawaii Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the island of Oahu, Hawaii Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model GFDL-CM3 Modelled Lake Powell releases and reservoir elevations under different alternative management scenarios Forecasting smallmouth bass invasion under different management scenarios for Lake Powell releases, 2024-2027 Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the island of Oahu, Hawaii Santa Clara River Valley South Bay Monthly BCMv8 MODFLOW-One Water Hydrologic Model integrated hydrologic-flow model used to evaluate water availability in the Osage Nation Model subareas and moisture zones used in a sensitivity analysis of a water-budget model completed in 2022 for the islands of Oahu and Maui, Hawaii MODFLOW-One-Water model used to support the Central Platte Natural Resources District Groundwater Management Plan Modelled Lake Powell releases and reservoir elevations under different alternative management scenarios Forecasting smallmouth bass invasion under different management scenarios for Lake Powell releases, 2024-2027 Klamath Monthly BCMv8 Water Availability Tool for Environmental Resources for the Commonwealth of Kentucky updated for 2019 Report and Publications: Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC Central Valley Hydrologic Model version 2 (CVHM2): Small Watershed Climate Data (Recharge, Runoff) Groundwater Availability of the Northern Atlantic Coastal Plain Future Climate and Hydrology from Twenty Localized Constructed Analog (LOCA) Scenarios and the Basin Characterization Model (BCMv8) Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model ACCESS 1.0 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model GFDL-CM3 Upper Midwest Water Science Center Data release in support of runoff sensitivity to snow depletion curve representation within a continental scale hydrologic model Data used to prioritize the selection of river basins for intensive monitoring and assessment by the U.S. Geological Survey