Skip to main content
Advanced Search

Filters: Tags: Water Erosion (X) > Types: Citation (X)

3 results (9ms)   

View Results as: JSON ATOM CSV
Soil erosion is an important process in dryland ecosystems, yet measurements and comparisons of wind and water erosion within and among such ecosystems are lacking. Here we compare wind erosion and transport �eld measurements with water erosion and transport from rainfall-simulation for three different semi-arid ecosystems: a shrubland near Carlsbad, New Mexico; a grassland near Denver, Colorado; and a forest near Los Alamos, New Mexico. In addition to comparing erosion loss from an area, we propose a framework for comparing horizontal mass transport of wind- and water-driven materials as a metric for local soil redistribution. Median erosion rates from wind for vertical mass flux measurements (g m−2 d−1)...
Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and...
Soil erosion is driven by not only aeolian but also fluvial transport processes, yet these two types of processes are usually studied independently, thereby precluding effective assessment of overall erosion, potential interactions between the two drivers, and their relative sensitivities to projected changes in climate and land use. Here we provide a perspective that aeolian and fluvial transport processes need to be considered in concert relative to total erosion and to potential interactions, that relative dominance and sensitivity to disturbance vary with mean annual precipitation, and that there are important scale-dependencies associated with aeolian–fluvial interactions. We build on previous literature...