Skip to main content
Advanced Search

Filters: Tags: Water Supply (X) > Categories: Publication (X)

29 results (41ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Frequent and persistent droughts exacerbate the problems caused by the inherent scarcity of water in the semiarid to arid parts of the southwestern United States. The occurrence of drought is driven by climatic variability, which for years before about the beginning of the 20th century in the Southwest must be inferred from proxy records. As part of a multidisciplinary study of the potential hydrologic impact of severe sustained drought on the Colorado River, the physical basis and limitations of tree rings as indicators of severe sustained drought are reviewed, and tree-ring data are analyzed to delineate a “worst-case� drought scenario for the Upper Colorado River Basin (UCRB). Runs analysis of a 121-site...
Snow covered area (SCA) observations from the Landsat Enhanced Thematic Mapper (ETM+) were used in combination with a distributed snowmelt model to estimate snow water equivalent (SWE) in the headwaters of the Rio Grande basin (3,419 km2) - a spatial scale that is an order of magnitude greater than previous reconstruction model applications. In this reconstruction approach, modeled snowmelt over each pixel is integrated over the time of ETM+ observed snow cover to estimate SWE. Considerable differences in the magnitude of SWE were simulated during the study. Basin-wide mean SWE was 2�6 times greater in April 2001 versus 2002. Despite these climatological differences, the model adequately recovered SWE at intensive...
This report cannot possibly cover all the issues of concern in the Colorado River basin. The basin is vast and diverse geographically, ethnically, and politically. Conflicts over water are part of its history, as water has been the defining resource in the settlement and development of the Colorado River basin. A complex set of laws, a treaty, court decrees, contracts, agreements, regulations and traditions of use have evolved over this past century which have governed water policy and management decisions. Over the last few decades, new social values have emerged in the basin and across the country which reflect an appreciation of the important functions of river systems along with a desire to preserve this natural...
thumbnail
Stable isotopes of delta(18)O, delta(2)H, and (13)C, radiogenic isotopes of (14)C and (3)H, and ground water chemical compositions were used to distinguish ground water, recharge areas, and possible recharge processes in an arid zone, fault-bounded alluvial aquifer. Recharge mainly occurs through exposed stream channel beds as opposed to subsurface inflow along mountain fronts. This recharge distribution pattern may also occur in other fault-bounded aquifers, with important implications for conceptualization of ground water flow systems, development of ground water models, and ground water resource management. Ground water along the mountain front near the basin margins contains low delta(18)O, (14)C (percent modern...
ABSTRACT: The pressure on water resources from energy resource development and transformation is likely to be greater in the future than it has been in the past. A rational resolution of the political problems that this situation will generate requires that: 1) planning based on predictions of future energy supply and demand be replaced by scenario, or “what if?” analysis; 2) full attention be paid to the uncertainties in per-unit-energy water requirements; 3) suitable stochastic measures of water availability be used to compare water supply with water demand; 4) realistic ecological criteria, and other alternative use criteria, be developed for estimating impacts of water withdrawn or consurned for energy development;...
Water introduced to surface drainages, such as agricultural and roadway runoff, mine drainage, or coalbed natural gas (CBNG)-produced water, potentially can be of environmental concern. In order to mitigate potential environmental effects, it may be important to be able to trace water discharged to the surface as it infiltrates and interacts with near-surface aquifers. We have chosen to study water withdrawn during CBNG production for isotope tracing in the hyporheic zone because it poses a variety of economic, environmental, and policy issues in the Rocky Mountain states. Ground water quality must be protected as CBNG water is added to semiarid ecosystems. Strontium (Sr) isotopes are effective fingerprints of the...
ABSTRACT: This paper discusses the consumptive water needs of the various energy conversion processes including oil shale retorting, coal gasification and liquefaction, electric power generation, and slurry pipelines. Projected energy development water needs in the upper Colorado River and Upper Missouri River basins are compared with projected agricultural needs and water available. The comparative cost and values of water to energy and agricultural development are discussed to emphasize this as well as the political and social factors entering into the picture.
The relationship between local ground water flows and NO(3)(-) transport to the channel was examined in three well transects from a natural, wooded riparian zone adjacent to the Shingobee River, MN. The hillslope ground water originated as recharge from intermittently grazed pasture up slope of the site. In the hillslope transect perpendicular to the stream, ground water NO(3)(-) concentrations decreased from approximately 3 mg N L(-1) beneath the ridge (80 m from the channel) to 0.01 to 1.0 mg N L(-1) at wells 1 to 3 m from the channel. The Cl(-) concentrations and NO(3)/Cl ratios decreased toward the channel indicating NO(3)(-) dilution and biotic retention. In the bankside well transect parallel to the stream,...
Water-resource managers need to forecast streamflow in the Lower Colorado River Basin to plan for water-resource projects and to operate reservoirs for water supply. Statistical forecasts of streamflow based on historical records of streamflow can be useful, but statistical assumptions, such as stationarity of flows, need to be evaluated. This study evaluated the relation between climatic fluctuations and stationarity and developed regression equations to forecast streamflow by using climatic fluctuations as explanatory variables. Climatic fluctuations were represented by the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and Southern Oscillation Index (SOI). Historical streamflow within...
Imagine a stream of water thousands of kilometers long and as wide as the distance between New York City and Washington, D. C., flowing toward you at 30 miles per hour. No, this is not some hypothetical physics problem—it is a real river, carrying more water than 7–15 Mississippi Rivers combined. But it is not on land. It's a river of water vapor in the atmosphere. Atmospheric rivers (ARs) are narrow corridors of water vapor transport in the lower atmosphere that traverse long swaths of the Earth's surface as they bind together the atmospheric water cycle (Figure 1). The characteristic (indeed defining) dimensions of these ARs are (1) integrated water vapor (IWV) concentrations such that if all the vapor in the...
A study using multiple techniques provided insight into tectonic influences on ground water systems; the results can help to understand ground water systems in the tectonically active western United States and other parts of the world. Ground water in the San Bernardino Valley (Arizona, United States and Sonora, Mexico) is the main source of water for domestic use, cattle ranching (the primary industry), and the preservation of threatened and endangered species. To improve the understanding of ground water occurrence, movement, and sustainability, an investigation was conducted using a number of complementary methods, including major ion geochemistry, isotope hydrology, analysis of gases dissolved in ground water,...
We quantified baseline and projected change in wildlife habitat, soil organic carbon (SOC), and water supply (recharge and runoff). For six case study watersheds we quantified the interactions of future development and changing climate on recharge, runoff and streamflow, and precipitation thresholds where dominant watershed hydrological processes shift through analysis of covariance.
ABSTRACT: The pressure on water resources from energy resource development and transformation is likely to be greater in the future than it has been in the past. A rational resolution of the political problems that this situation will generate requires that: 1) planning based on predictions of future energy supply and demand be replaced by scenario, or “what if?” analysis; 2) full attention be paid to the uncertainties in per-unit-energy water requirements; 3) suitable stochastic measures of water availability be used to compare water supply with water demand; 4) realistic ecological criteria, and other alternative use criteria, be developed for estimating impacts of water withdrawn or consurned for energy development;...
The relationship between local ground water flows and NO(3)(-) transport to the channel was examined in three well transects from a natural, wooded riparian zone adjacent to the Shingobee River, MN. The hillslope ground water originated as recharge from intermittently grazed pasture up slope of the site. In the hillslope transect perpendicular to the stream, ground water NO(3)(-) concentrations decreased from approximately 3 mg N L(-1) beneath the ridge (80 m from the channel) to 0.01 to 1.0 mg N L(-1) at wells 1 to 3 m from the channel. The Cl(-) concentrations and NO(3)/Cl ratios decreased toward the channel indicating NO(3)(-) dilution and biotic retention. In the bankside well transect parallel to the stream,...
The Colorado River has historically been an abundant source of supply for water users in the United States and Mexico. With growth of demands on this water supply, the time of historical abundance has ended. The previous five years of drought remain manifested in low reservoir levels. The Secretary of the Interior is beginning preparation of first-ever shortage criteria for the reservoir system. These conditions demonstrate the need for a strong scientific foundation in understanding climatic and hydrologic conditions that influence Colorado River water supplies. We know that droughts will inevitably occur in the future – a future made more uncertain by the impacts of climate change and increased hydrologic variability....
ABSTRACT: The pressure on water resources from energy resource development and transformation is likely to be greater in the future than it has been in the past. A rational resolution of the political problems that this situation will generate requires that: 1) planning based on predictions of future energy supply and demand be replaced by scenario, or “what if?” analysis; 2) full attention be paid to the uncertainties in per-unit-energy water requirements; 3) suitable stochastic measures of water availability be used to compare water supply with water demand; 4) realistic ecological criteria, and other alternative use criteria, be developed for estimating impacts of water withdrawn or consurned for energy development;...
The objective is to develop techniques to evaluate how changes in basic data networks can improve accuracy of water supply forecasts for mountainous areas. The approach used was to first quantify how additional data would improve our knowledge of winter precipitation, and second to estimate how this knowledge translates, quantitatively, into improvement in forecast accuracy. A software system called DATANET was developed to analyze each specific gage network alternative. This system sets up a fine mesh of grid points over the basin. The long-term winter mean precipitation at each grid point is estimated using a simple atmospheric model of the orographic precipitation process. The mean runoff at each grid point is...
Concern has been raised that selenium contamination may be adversely affecting endangered fish in the upper Colorado River basin. The objective of the study was to determine if operation of a water control structure (opened in December 1996) that allowed the Colorado River to flow through a channel area at Walter Walker State Wildlife Area (WWSWA) would reduce selenium and other inorganic elements in water, sediment, aquatic invertebrates, and forage fish. Endangered Colorado pikeminnow were collected and muscle plug samples taken for selenium analysis. Selenium concentrations in filtered water were 21.0 microg/L in 1995, 23.5 microg/L in 1996, 2.1 microg/L in 1997, and 2.1 microg/L in 1998. Selenium concentrations...
Stable isotope values of hydrogen and oxygen from precipitation and ground water samples were compared by using a volumetrically based mixing equation and stable isotope gradient to estimate the season and location of recharge in four basins. Stable isotopes were sampled at 11 precipitation sites of differing elevation during a 2-year period to quantify seasonal stable isotope contributions as a function of elevation. Supplemental stable isotope data collected by the International Atomic Energy Association during a 14-year period were used to reduce annual variability of the mean seasonal stable isotope data. The stable isotope elevation relationships and local precipitation elevation relationships were combined...
Thehigh demand for water, the recent multiyear drought (1999–2007), andprojections of global warming have raised questions about the long-termsustainability of water supply in the southwestern United States. Inthis study, the potential effects of specific levels of atmosphericwarming on water-year streamflow in the Colorado River basin areevaluated using a water-balance model, and the results are analyzedwithin the context of a multi-century tree-ring reconstruction (1490–1998) ofstreamflow for the basin. The results indicate that if futurewarming occurs in the basin and is not accompanied byincreased precipitation, then the basin is likely to experience periodsof water supply shortages more severe than those...


map background search result map search result map Ground water recharge and flow characterization using multiple isotopes. Ground water recharge and flow characterization using multiple isotopes.