Skip to main content
Advanced Search

Filters: Tags: Water depth (X) > partyWithName: Pacific Coastal and Marine Science Center (X)

150 results (50ms)   

View Results as: JSON ATOM CSV
thumbnail
This portion of the USGS data release presents bathymetry data collected during surveys performed in the Columbia River littoral cell, Washington and Oregon in 2014 (USGS Field Activity Number 2014-631-FA). Bathymetry data were collected using four personal watercraft (PWCs) equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. The sonar systems consisted of an Odom Echotrac CV-100 single-beam echosounder and 200 kHz transducer with a 9 degree beam angle. Raw acoustic backscatter returns were digitized by the echosounder with a vertical resolution of 1.25 cm. Depths from the echosounders were computed using sound velocity profiles measured using a YSI CastAway CTD during...
thumbnail
This part of the data release presents bathymetry data from the Elwha River delta collected in July 2016 using a kayak. The kayak was equipped with a single-beam echosounder and a survey-grade global navigation satellite system (GNSS) receiver.
thumbnail
Water depth, turbidity, and current velocity time-series data were collected in Liberty Island Conservation Bank (WVA) in 2017. The turbidity sensors were not calibrated to suspended-sediment concentration at this location. Typically, each zip folder for a deployment period contains two data files from a velocimeter and one data file from a CTD, each of which include data from an optical backscatter sensor. --------- Data were collected from several sites in Little Holland Tract (LHT) and Liberty Island (LI), including the Liberty Island Conservation Bank (LICB), from 2015 to 2017. Table 1 (below) lists the deployment name (DLXXX) and dates for each sampling station location. Station names starting with ‘H’ are...
thumbnail
Water depth, turbidity, and current velocity time-series data were collected in Liberty Island from 2015 to 2017. Depth (from pressure) and velocity were measured in high-frequency (8 Hz) bursts. Burst means represent tidal stage and currents, and burst data can be used to determine wave height, period, and direction, and wave-orbital velocity. The turbidity sensors were calibrated to suspended-sediment concentration measured in water samples collected on site. The calibration and fit parameters for all of the turbidity sensors used in the study are tabulated and provided with the data. Data were sequentially added to this data release as they were collected and post-processed. Typically, each zip folder...
thumbnail
This data release presents beach topography and nearshore bathymetry data from repeated surveys in northern Monterey Bay, California to document changes in shoreline position and coastal morphology as they relate to episodic (storms), seasonal, and interannual and longer (e.g. El Niño) processes. The ongoing monitoring program was initiated in October 2014 with semi-annual surveys performed in late summer (September or October) and Spring (March). Nearshore bathymetry and topography data were collected along a series of shore-perpendicular transects spaced primarily at 50-250 m intervals between Santa Cruz and Moss Landing, California (fig. 1). The transects were located along sandy stretches of the coastline...
thumbnail
First Release: November 2018 The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California covers the coastline from Pt. Conception to Golden Gate Bridge....
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This dataset contains projections for San Mateo County. CoSMoS makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California covers the coastline from Pt. Conception to Golden Gate Bridge. Methods and...
thumbnail
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This dataset contains projections from the Coastal Storm Modeling System (CoSMoS) for Santa Barbara County, north of Pt. Conception. CoSMoS makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California...
thumbnail
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average...
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios...
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios...
thumbnail
This data contains model-derived total water levels (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions) and simulated...
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...


map background search result map search result map Beach topography and nearshore bathymetry of northern Monterey Bay, California Water-level, wind-wave, velocity, and suspended-sediment concentration (SSC) time-series data from Liberty Island Conservation Bank (station WVA), Sacramento-San Joaquin Delta, California, 2017 Coastal Storm Modeling System (CoSMoS) for Central California, v3.1 Water-level, wind-wave, velocity, and suspended-sediment concentration (SSC) time-series data from Liberty Island (station LVB), Sacramento-San Joaquin Delta, California, 2015-2017 (ver. 2.0, September, 2019) Nearshore bathymetry of the Columbia River littoral cell, Washington and Oregon, 2014 CoSMoS v3.1 - Santa Barbara County CoSMoS v3.1 flood hazard projections: 100-year storm in San Luis Obispo County CoSMoS v3.1 ocean-currents hazards: 1-year storm in Santa Barbara County CoSMoS v3.1 wave-hazard projections: 1-year storm in Santa Barbara County CoSMoS v3.1 wave-hazard projections: 100-year storm in Santa Barbara County CoSMoS v3.1 wave-hazard projections: 100-year storm in San Luis Obispo County CoSMoS v3.1 water level projections: 20-year storm in San Luis Obispo County CoSMoS v3.1 - San Mateo County CoSMoS v3.1 flood depth and duration projections: 100-year storm in San Mateo County CoSMoS v3.1 ocean-currents hazards: average conditions in San Mateo County CoSMoS v3.1 flood hazard projections: 20-year storm in San Francisco County CoSMoS v3.1 wave-hazard projections: average conditions in San Francisco County Nearshore bathymetry data from the Elwha River delta, Washington, July 2016, collected from kayak CoSMoS v3.1 flood hazard projections: 1-year storm in Monterey County CoSMoS v3.1 ocean-currents hazards: average conditions in Monterey County Water-level, wind-wave, velocity, and suspended-sediment concentration (SSC) time-series data from Liberty Island Conservation Bank (station WVA), Sacramento-San Joaquin Delta, California, 2017 Nearshore bathymetry data from the Elwha River delta, Washington, July 2016, collected from kayak Water-level, wind-wave, velocity, and suspended-sediment concentration (SSC) time-series data from Liberty Island (station LVB), Sacramento-San Joaquin Delta, California, 2015-2017 (ver. 2.0, September, 2019) CoSMoS v3.1 flood hazard projections: 20-year storm in San Francisco County CoSMoS v3.1 wave-hazard projections: average conditions in San Francisco County Beach topography and nearshore bathymetry of northern Monterey Bay, California CoSMoS v3.1 flood depth and duration projections: 100-year storm in San Mateo County CoSMoS v3.1 ocean-currents hazards: average conditions in San Mateo County CoSMoS v3.1 - San Mateo County CoSMoS v3.1 - Santa Barbara County CoSMoS v3.1 ocean-currents hazards: 1-year storm in Santa Barbara County CoSMoS v3.1 wave-hazard projections: 1-year storm in Santa Barbara County CoSMoS v3.1 wave-hazard projections: 100-year storm in Santa Barbara County Nearshore bathymetry of the Columbia River littoral cell, Washington and Oregon, 2014 CoSMoS v3.1 flood hazard projections: 100-year storm in San Luis Obispo County CoSMoS v3.1 wave-hazard projections: 100-year storm in San Luis Obispo County CoSMoS v3.1 water level projections: 20-year storm in San Luis Obispo County CoSMoS v3.1 flood hazard projections: 1-year storm in Monterey County CoSMoS v3.1 ocean-currents hazards: average conditions in Monterey County Coastal Storm Modeling System (CoSMoS) for Central California, v3.1