Skip to main content
Advanced Search

Filters: Tags: Water depth (X)

465 results (70ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay shallows, tidal creek, or marsh/mudflat/upper tidal creek). Users are advised to check metadata and instrument information carefully for applicable time periods of specific data, as individual instrument deployment...
thumbnail
Files contain hydrodynamic and sediment transport data for the location and deployment indicated. Time-series data of water depth, velocity, turbidity, and temperature were collected in San Pablo Bay and China Camp Marsh as part of the San Francisco Bay Marsh Sediment Experiments. Several instruments were deployed in tidal creek, marsh, mudflat, and Bay locations, gathering data on water depth, velocity, salinity/temperature, and turbidity. Deployment data are grouped by region (Bay channel (main Bay), Bay shallows, tidal creek, or marsh/mudflat/upper tidal creek). Users are advised to check metadata and instrument information carefully for applicable time periods of specific data, as individual instrument deployment...
thumbnail
Water depth and depth-averaged water velocity in the lower San Joaquin River, California, collected generally near Greyson Bridge, the Old Fishermen's Club, and Sturgeon Bend. These data were collected using a SonTek M9 Acoustic Doppler Current Profiler (ADCP) May 10-11, 2012, and May 24-25, 2012.
thumbnail
These geospatial data were collected during the May 24, 2017 topographic and hydrographic survey of Saddle River in the vicinity of New Jersey State Route 17 at Ridgewood, NJ.
thumbnail
These geospatial data were collected during the August 30, 2016 topographic and hydrographic survey of the Wapsipinicon River in the vicinity of US-30 near near Wheatland, IA.
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) Program Long Term Resource Monitoring (LTRM) element has overseen the collection, processing, and serving of bathymetric data since 1989. A systemic data collection for the Upper Mississippi River System (UMRS) was completed in 2010. Water depth in aquatic systems is important for describing the physical characteristics of a river. Bathymetric maps are used for conducting spatial inventories of the aquatic habitat and detecting bed and elevation changes due to sedimentation. Bathymetric data is widely used, specifically for studies of water level management alternatives, modeling navigation impacts and hydraulic conditions, and environmental...
thumbnail
The U.S. Geological Survey obtained measurements of channel geometry, flow velocity, and river discharge from five rivers in Alaska September 18–20, 2016, to support research on remote sensing of river discharge. The streamflow data were acquired from the Knik, Matanuska, Chena, and Salcha Rivers and Montana Creek using TeleDyne RD Instruments Acoustic Doppler Current Profilers (ADCPs), including the RioPro, StreamPro, and RiverRay models. The original *.mmt and *.pd0 format files are provided in this data release. This data release supports the following article: Legleiter, C.J., Kinzel, P.J., and Nelson, J.M., 2017, Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various...
thumbnail
These data are high-resolution bathymetry (riverbed elevation) and depth-averaged velocities in comma-delimited table format, generated from hydrographic and velocimetric surveys near highway bridge structures over the Missouri and Mississippi Rivers near St. Louis, Missouri, August 3–10, 2020. Hydrographic data were collected using a high-resolution multibeam echosounder mapping system (MBMS), which consists of a multibeam echosounder (MBES) and an inertial navigation system (INS) mounted on a marine survey vessel. Data were collected as the vessel traversed the river along planned survey lines distributed throughout the reach. Data collection software integrated and stored the depth data from the MBES and the...
thumbnail
This portion of the USGS data release presents bathymetry data collected during surveys performed on the Elwha River delta, Washington in July 2015 (USGS Field Activity Number 2015-648-FA). Bathymetry data were collected using two personal watercraft (PWCs), each equipped with single-beam sonar systems and global navigation satellite system (GNSS) receivers. The PWC sonar systems consisted of an Odom Echotrac CV-100 single-beam echosounder and 200 kHz transducer with a 9° beam angle. Raw acoustic backscatter returns were digitized by the echosounder with a vertical resolution of 1.25 cm. Depths from the echosounders were computed using sound velocity profiles measured using a YSI CastAway CTD during the survey....
thumbnail
These data are high-resolution bathymetry (riverbed elevation) in ASCII XYZ format, generated from the June 6, 2014, hydrographic and velocimetric survey of the Mississippi River near structure K0932 on U.S. Highway 54 at Louisiana, Missouri. Hydrographic data were collected using a high-resolution multibeam echosounder mapping system (MBMS), which consists of a multibeam echosounder (MBES) and an inertial navigation system (INS) mounted on a marine survey vessel. Data were collected as the vessel traversed the river along planned survey lines distributed throughout the reach. Data collection software integrated and stored the depth data from the MBES and the horizontal and vertical position and attitude data of...
thumbnail
This data release supports the following publication: Hittle, Elizabeth, 2017, Longshore Water-Current Velocity and the Potential for Transport of Contaminants: A Pilot Study in Lake Erie from Walnut Creek to Presque Isle State Park Beaches, Erie, Pennsylvania, June and August 2015: U.S. Geological Survey Open-File Report 2016–1206 126 p., https://doi.org/10.3133/ofr20161206. This dataset is Velocity Mapping Toolbox (VMT) processed Acoustic Doppler Current Profiler (ADCP) data. The data was processed with a horizontal averaging of 5 grid nodes (Parsons, D.R., Jackson, P.R., Czuba, J.A., Oberg, K.A., Mueller, D.S., Rhoads, B., Best, J.L., Johnson, K.K., Engel, F., and Riley, J. (2013) Velocity Mapping Toolbox (VMT):...
thumbnail
These data are high-resolution bathymetry (riverbed elevation) in ASCII XYZ format, generated from the June 2, 2017, hydrographic survey of the Gasconade River near structure A3787 on U.S. Highway 50 at Mount Sterling, Missouri, to help identify possible effects from extreme flooding on May 1-2, 2017. Hydrographic data were collected using a high-resolution multibeam echosounder mapping system (MBMS), which consists of a multibeam echosounder (MBES) and an inertial navigation system (INS) mounted on a marine survey vessel. Data were collected as the vessel traversed the river along planned survey lines distributed throughout the reach. Data collection software integrated and stored the depth data from the MBES and...
thumbnail
A bathymetric layer for Lake Erie, obtained from the Great Lakes Information Network (GLIN) at http://gis.glin.net/ogc/services.php. NOAA is engaged in a program to compile Great Lakes bathymetric data and make them readily available to the public, especially to the communities concerned with Great Lakes science, pollution, coastal erosion, response to climate changes, threats to lake ecosystems, and health of the fishing industry. This program is managed by NGDC and it relies on the cooperation of NOAA/Great Lakes Environmental Research Laboratory, NOAA/National Ocean Service, the Canadian Hydrographic Service, other agencies, and academic laboratories. Compilation of new bathymetry for the Great Lakes is...


map background search result map search result map Lake Erie bathymetric contours (depth in meters) Velocity Mapping Toolbox (VMT) processed Acoustic Doppler Current Profiler (ADCP) transect data averaged from 4 meters to Lake bottom on June 24, 2015 2012 ADCP depth and velocity data Nearshore bathymetry data from the Elwha River delta, Washington, July 2015 ADCP data from rivers in Alaska, September 18–20, 2016 siteID-019 Gallatin River at I-90 near Manhattan, MT SiteID-006 Snake River at West River Road, near Shelley, ID SiteID-030 Upper Iowa River, at IA-76 near Dorchester, IA SiteID-031 Wapsipinicon River, at US-30 near Wheatland, IA UMRR Mississippi River Navigation Pool 14 Bathymetry Footprint UMRR Mississippi River Navigation Pool 15 Bathymetry Footprint SiteID-034 Saddle River at NJ17 at Ridgewood, NJ Site G02 Gasconade River Bathymetry at Structure A3878 on U.S. Highway 50 at Mount Sterling, Missouri, June 2017 Site 32 Mississippi River Bathymetry Data at Structure K0932 on U.S. Highway 54 at Louisiana, Missouri, June 2014 CoSMoS v3.1 ocean-currents hazards: 20-year storm in Monterey County CoSMoS v3.1 ocean-currents hazards: 100-year storm in Monterey County Bathymetry and Velocity Data from Surveys at Highway Bridges Crossing the Missouri and Mississippi Rivers near St. Louis, Missouri, August 3–10, 2020 SiteID-034 Saddle River at NJ17 at Ridgewood, NJ Site G02 Gasconade River Bathymetry at Structure A3878 on U.S. Highway 50 at Mount Sterling, Missouri, June 2017 SiteID-031 Wapsipinicon River, at US-30 near Wheatland, IA siteID-019 Gallatin River at I-90 near Manhattan, MT SiteID-030 Upper Iowa River, at IA-76 near Dorchester, IA Site 32 Mississippi River Bathymetry Data at Structure K0932 on U.S. Highway 54 at Louisiana, Missouri, June 2014 Velocity Mapping Toolbox (VMT) processed Acoustic Doppler Current Profiler (ADCP) transect data averaged from 4 meters to Lake bottom on June 24, 2015 Nearshore bathymetry data from the Elwha River delta, Washington, July 2015 SiteID-006 Snake River at West River Road, near Shelley, ID 2012 ADCP depth and velocity data UMRR Mississippi River Navigation Pool 15 Bathymetry Footprint UMRR Mississippi River Navigation Pool 14 Bathymetry Footprint Bathymetry and Velocity Data from Surveys at Highway Bridges Crossing the Missouri and Mississippi Rivers near St. Louis, Missouri, August 3–10, 2020 CoSMoS v3.1 ocean-currents hazards: 20-year storm in Monterey County CoSMoS v3.1 ocean-currents hazards: 100-year storm in Monterey County Lake Erie bathymetric contours (depth in meters) ADCP data from rivers in Alaska, September 18–20, 2016