Skip to main content
Advanced Search

Filters: Tags: Watershed Management (X)

182 results (16ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Switchgrass (Panicum virgatum L.), a highly productive perennial grass, has been recommended as one potential source for cellulosic biofuel feedstocks. Previous studies indicate that planting perennial grasses (e.g., switchgrass) in high topographic relief cropland waterway buffers can improve local environmental conditions and sustainability. The main advantages of this land management practice include (1) reducing soil erosion and improving water quality because switchgrass requires less tillage, fertilizers, and pesticides; and (2) improving regional ecosystem services (e.g., improving water infiltration, minimizing drought and flood impacts on production, and serving as carbon sinks). In this study, we mapped...
This file (wymt_ffa_2018D_WATSTORE.txt) contains peak flow data for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018. The file is in a text format called WATSTORE (National Water Data Storage and Retrieval System) available from NWISWeb (http://nwis.waterdata.usgs.gov/usa/nwis/peak).
The U.S. Geological Survey (USGS), in cooperation with the Puerto Rico Environmental Quality Board, has compiled a series of geospatial datasets for Puerto Rico to be implemented into the USGS StreamStats application (https://streamstats.usgs.gov/ss/). These geospatial datasets, along with basin characteristics datasets for Puerto Rico published as a separate USGS data release (https://doi.org/10.5066/P9HK9SSQ), were used to delineate watersheds and develop the peak-flow and low-flow regression equations used by StreamStats. The geospatial dataset described herein are the sink watershed grid rasters at a 10-m resolution. A value is assigned to pixels in each sink watershed and the count of cells that drain to that...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled ACCESS 1.0 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled Global Climate Models (GCMs) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The 20 future climate scenarios consist of ten GCMs with RCP 4.5 and 8.5 each: ACCESS 1.0, CanESM2, CCSM4, CESM1-BGC, CMCC-CMS, CNRM-CM5, GFDL-CM3, HadGEM2-CC, HadGEM2-ES, and MIROC5. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the Federal Emergency Management Agency, Pennsylvania Department of Environmental Protection, Pennsylvania Department of Transportation, and Susquehanna River Basin Commission, prepared hydro-conditioned geographic information systems (GIS) layers for use in the Pennsylvania StreamStats application. These data were used to update the peak flow and low flow regression equations for Pennsylvania. This dataset consists of flow direction rasters for each 8-digit Hydrologic Unit Code (HUC) area in Pennsylvania, one of the layer types needed to delineate watersheds within the HUC-8 areas, merged into a single dataset. The 59 HUCs represented by this dataset are 02040101,...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the Federal Emergency Management Agency, Pennsylvania Department of Environmental Protection, Pennsylvania Department of Transportation, and Susquehanna River Basin Commission, prepared hydro-conditioned geographic information systems (GIS) layers for use in the Pennsylvania StreamStats application. These data were used to update the peak flow and low flow regression equations for Pennsylvania. This dataset consists of stream definition 900 cell threshold rasters for each 8-digit Hydrologic Unit Code (HUC) area in Pennsylvania, one of the layer types needed to delineate watersheds within the HUC-8 areas, merged into a single dataset. The 59 HUCs represented...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the State of Hawaiʻi Department of Transportation, estimated flood magnitudes for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEP) for unregulated streamgages in Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi, State of Hawaiʻi, using data through water year 2020. Regression equations which can be used to estimate flood magnitude and associated frequency at ungaged streams were developed. The methods and results of the study are published in a separate report (https://doi.org/10.3133/sir20235014). This data release contains (1) a folder with the PeakFQ output files for each streamgage, ".PRT" and ".EXP" files, for use in...
thumbnail
Reliable peak-streamflow information is critical for proper design of stream-related infrastructure, such as bridges, and StreamStats provides a user-friendly interface to estimate peak flows (https://streamstats.usgs .gov/ss/). StreamStats develops these peak-flow estimates using basin characteristics for the entire contributing area to a user-selected point; however, infrastructure planners often need to estimate flows for an area downstream from a known control such as a reservoir release or a weir. This dataset was compiled in cooperation with the South Carolina Department of Transportation (SCDOT) to provide a Geographic Information System (GIS) layer of filtered regulation points from the U.S. Army Corps Engineers...
thumbnail
This data release contains monthly 270-meter gridded Basin Characterization Model (BCMv8) climate inputs and hydrologic outputs for Santa Clara River Valley South Bay (SCVSB). Gridded climate inputs include: precipitation (ppt), minimum temperature (tmn), maximum temperature (tmx), and potential evapotranspiration (pet). Gridded hydrologic variables include: actual evapotranspiration (aet), climatic water deficit (cwd), snowpack (pck), recharge (rch), runoff (run), and soil storage (str). The units for temperature variables are degrees Celsius, and all other variables are in millimeters. Monthly historical variables from water years 1896 to 2019 are summarized into water year files and long-term average summaries...
thumbnail
This tabular dataset includes precipitation data, inflow and outflow data, and other associated data for a bioretention garden in Douglas County, Nebraska. At the Eastern Nebraska Office on Aging (ENOA) bioretention garden the components of the water balance that were measured or calculated were precipitation volume, stormwater inflow volume to bioretention garden, were overflow volume, and evapotranspiration. The performance of the bioretention gardens was evaluated for a series of rainfall events. The start of an event was determined based on when rainfall began at the site. The end of an event was determined based on when the water level was equal to zero in the stilling well of the inflow flume or when the water...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, that were based on methods described by Sando and McCarthy (2018).
thumbnail
This ArcGIS shapefile shows the known locations of beaver dams in the Tualatin Basin. The dam location information was generated by multiple local agencies, groups, and organizations. The local sources had identified the beaver dams between 2011 and 2019. USGS worked with these local sources to combine all data into one inventory.
The U.S. Geological Survey (USGS), in cooperation with the Puerto Rico Environmental Quality Board, has compiled a series of geospatial datasets for Puerto Rico to be implemented into the USGS StreamStats application (https://streamstats.usgs.gov/ss/). These geospatial datasets, along with basin characteristics datasets for Puerto Rico published as a separate USGS data release (https://doi.org/10.5066/P9HK9SSQ), were used to delineate watersheds and develop the peak-flow and low-flow regression equations used by StreamStats. The geospatial dataset described herein are the sink point grid rasters at a 10-m resolution, which are raster representations of the sink points. The value of 1 is assigned to pixels that are...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the Puerto Rico Environmental Quality Board, has compiled a series of geospatial datasets for Puerto Rico to be implemented into the USGS StreamStats application (https://streamstats.usgs.gov/ss/). These geospatial datasets, along with basin characteristics datasets for Puerto Rico published as a separate USGS data release (https://doi.org/10.5066/P9HK9SSQ), were used to delineate watersheds and develop the peak-flow and low-flow regression equations used by StreamStats. The geospatial dataset described herein are the seven layers: Catchment, AdjointCatchment, DrainageLine, DrainagePoint, LongestFlowPathCat, LongestFlowPathAdjCat, and SinkWatershed, which are...
This study uses an integrative approach to study the water-quality impacts of future global climate and land-use changes. In this study, changing land-use types was used as a mitigation strategy to reduce the adverse impacts of global climate change on water resources. The climate scenarios were based on projections made by the Intergovernmental Panel on Climate Change (IPCC) and the United Kingdom Hadley Centre's climate model (HadCM2). The Thornthwaite water-balance model was coupled with a land-use model (L-THIA) to investigate the hydrologic effects of future climate and land-use changes in the Ohio River Basin. The land-use model is based on the Soil Conservation Service's curve-number method. It uses the curve...
Categories: Publication; Types: Citation; Tags: ASFA 3: Aquatic Pollution & Environmental Quality, Climatic changes, Data Visualization & Tools, Environment management, Freshwater, All tags...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, that were based on methods described by Sando and McCarthy (2018). Citation: Sando, S.K., and McCarthy, P.M.,...


map background search result map search result map Beaver dam locations in the Tualatin Basin, Oregon, between 2011 and 2019 Switchgrass waterway buffers in the eastern Great Plains Sink point rasters for Puerto Rico StreamStats Sink watershed rasters for Puerto Rico StreamStats Local geodatabases for Puerto Rico StreamStats ENOA--water balance events summary Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 Flow direction raster for Pennsylvania StreamStats Stream definition 900 cell threshold raster for Pennsylvania StreamStats WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 Santa Clara River Valley South Bay Monthly BCMv8 Polygon Locations of Basins upstream from Dams in South Carolina, derived from U.S. Army Corps Engineers National Inventory of Dams Peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 Future Climate and Hydrology from Twenty Localized Constructed Analog (LOCA) Scenarios and the Basin Characterization Model (BCMv8) Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model ACCESS 1.0 Generalized least-squares WREG regression files for Hawaiʻi flood-frequency analysis, based on data through water year 2020 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on tributaries of the Bighorn, Tongue, and Lower Yellowstone Rivers, based on data through water year 2021 WATSTORE Peak-flow frequency analyses for selected streamgages in Carter, Custer, Fallon, Powder River, and Prairie Counties, Montana, based on data through water year 2022 ENOA--water balance events summary Beaver dam locations in the Tualatin Basin, Oregon, between 2011 and 2019 Santa Clara River Valley South Bay Monthly BCMv8 Sink point rasters for Puerto Rico StreamStats Sink watershed rasters for Puerto Rico StreamStats Local geodatabases for Puerto Rico StreamStats WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on tributaries of the Bighorn, Tongue, and Lower Yellowstone Rivers, based on data through water year 2021 WATSTORE Peak-flow frequency analyses for selected streamgages in Carter, Custer, Fallon, Powder River, and Prairie Counties, Montana, based on data through water year 2022 Peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 PeakFQ version 7.3 specifications file for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 Peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages in and near the Milk River Basin, Montana, based on data through water year 2018, Part 1 Generalized least-squares WREG regression files for Hawaiʻi flood-frequency analysis, based on data through water year 2020 Polygon Locations of Basins upstream from Dams in South Carolina, derived from U.S. Army Corps Engineers National Inventory of Dams Flow direction raster for Pennsylvania StreamStats Stream definition 900 cell threshold raster for Pennsylvania StreamStats Future Climate and Hydrology from Twenty Localized Constructed Analog (LOCA) Scenarios and the Basin Characterization Model (BCMv8) Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model ACCESS 1.0 Switchgrass waterway buffers in the eastern Great Plains