Skip to main content
Advanced Search

Filters: Tags: Weighted regression on time, discharge, and season (WRTDS) (X)

4 results (117ms)   

View Results as: JSON ATOM CSV
thumbnail
This data set includes WRTDS nutrient flux trend results and the values of daily streamflow trend results displayed in the Quantile-Kendall plots. For 1995-2015 nutrient trends, the method of generalized flow normalization (FNG) was used which explicitly addresses non-stationary streamflow conditions. For 2005-2015 nutrient trends, the WRTDS trend analyses used the method of stationary flow normalization (FNS) because streamflow nonstationarity is difficult to assess over this shorter duration time frame. The 1995-2015 annual nutrient trends were determined for all five nutrient parameters (TP, SRP, TN, NO23, TKN), and monthly trends were evaluated only for SRP. The 2005-2015 annual nutrient trends were determined...
thumbnail
Data provided in this release support the findings in Choquette et al. (2019), utilizing methods for evaluating water-quality and daily-streamflow trends described also in Hirsch and DeCicco (2015 and 2018a) and Hirsch (2018). The trend results and model-input data focus on 10 locations in the Lake Erie watershed that have long-term (20 or more years) water-quality and streamflow monitoring records. The trend results include the years 1987 through 2016 or specified sub-periods during this time frame. The model-input data records spanned the time period 1974 through 2016 although record lengths varied by site, data type, and trend analysis. The water-quality records were provided by the National Center for Water...
thumbnail
This data set includes WRTDS nutrient flux trend results and the values of daily streamflow trend results displayed in the Quantile-Kendall plots. For 1995-2015 nutrient trends, the method of generalized flow normalization (FNG) was used which explicitly addresses non-stationary streamflow conditions. For 2005-2015 nutrient trends, the WRTDS trend analyses used the method of stationary flow normalization (FNS) because streamflow nonstationarity is difficult to assess over this shorter duration time frame. The 1995-2015 annual nutrient trends were determined for all five nutrient parameters (TP, SRP, TN, NO23, TKN), and monthly trends were evaluated only for SRP. The 2005-2015 annual nutrient trends were determined...
thumbnail
Trends in nutrient fluxes and streamflow for selected tributaries in the Lake Erie watershed were calculated using monitoring data at 10 locations. Trends in flow-normalized nutrient fluxes were determined by applying a weighted regression approach called WRTDS (Weighted Regression on Time, Discharge, and Season). Site information and streamflow and water-quality records are contained in 3 zipped files named as follows: INFO (site information), Daily (daily streamflow records), and Sample (water-quality records). The INFO, Daily (flow), and Sample files contain the input data, by water-quality parameter and by site as .csv files, used to run trend analyses. These files were generated by the R (version 3.1.2) software...


    map background search result map search result map Nutrient and streamflow model-input data (1974-2016) and trend results (1987-2016) for selected Lake Erie tributaries Nutrient and streamflow model-input data Lake Erie Tributaries: Nutrient and streamflow trend results Nutrient and streamflow trend results Nutrient and streamflow model-input data (1974-2016) and trend results (1987-2016) for selected Lake Erie tributaries Nutrient and streamflow model-input data Lake Erie Tributaries: Nutrient and streamflow trend results Nutrient and streamflow trend results