Skip to main content
Advanced Search

Filters: Tags: Western Lake Erie (X) > Types: OGC WMS Layer (X)

20 results (56ms)   

View Results as: JSON ATOM CSV
thumbnail
Intracoelomic implantation of electronic tags has become a common method in fishery research, but rarely are fish examined by scientists after release to understand the extent that surgical incisions have healed. Walleye (Sander vitreus) are a valuable, highly-exploited fishery resource in the Laurentian Great Lakes. Here, fishery capture of walleye with internal acoustic transmitters combined with a high reward program provided multiple opportunities to examine photographs and quantify the status of surgical incisions. Walleye (n=926) from reef and river spawning populations in Lake Erie and Lake Huron were implanted with acoustic transmitters during spring spawning events from 2011 to 2016. Incisions were closed...
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
The Maumee River network contributes a significant amount of total phosphorus (P), including both sediment-bound P (sed-P) and dissolved reactive P (DRP, also known as orthophosphate). Most headwater streams of the Maumee River are predominantly agricultural in land use, interspersed with rural communities. Implementation of best management practices on agricultural operations has worked to limit the amount of material that is carried to the stream from cropland. However, several studies have shown streambank erosion to be another source of suspended sediment in these streams. The objective of this work was to map streambank erosion and soft, streambed sediment abundance along stream reaches in a basin that is currently...
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
The USGS developed the second in a series of informative spatial distribution datasets of submersed aquatic vegetation (SAV) in the western basin of Lake Erie. The second dataset was developed by object-based image analysis of high-resolution imagery (US waters < 6 meters deep) collected during peak biomass in 2018 to allow assessments of changes in SAV distribution. Assessing SAV abundance may contribute to inform the long-term impacts of Grass Carp, Common Carp, eutrophication, wind fetch and sedimentation on vegetation communities throughout Lake Erie and the impact these stressors may have on other organisms in the ecosystem. These data may also help inform the deployment of toxic bait deployments targeting...
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
This dataset includes information collected from “ecological process monitoring stations” located across the western basin of Lake Erie (originating at the Maumee River and reaching as far east as the Bass Islands). Nine worksheets are included in this file, of which 1 is a meta-data sheet that describes the variable names and purpose of the other sheets. Included herein is the initial and final sizes of caged Lampsilis siliquoidea mussels placed at each of the afore-mentioned stations, along with the size and mass of dreissenid mussels that grew on Hester-Dendy samplers at the same locations and measurements of cyanobacterial abundance (as inferred from satellite imagery). In addition, measurements of lipids and...
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.


    map background search result map search result map 2013 Ecological Process Monitoring in Western Basin Lake Erie data Condition of Surgical Acoustic Tag Incisions in Recaptured Lake Erie Walleye (2011-2016) Black Creek Rapid Geomorphic Assessment, Allen County, Indiana Object-Based Image Analysis Detection of Aquatic Vegetation, Lake Erie, Western Basin, 2018 2018 Western Lake Erie 4-Band Orthophotos Orthophotos: oriXU-RS180_20180823_080451_930_707_131563 - - through - -  oriXU-RS180_20180823_082750_657_10339_131649 Orthophotos: oriXU-RS180_20180823_082803_677_10451_131650 - - through - - oriXU-RS180_20180823_085457_402_20083_131736 Orthophotos: oriXU-RS180_20180823_085511_671_20195_131737 - - through - - oriXU-RS180_20180823_092005_701_29827_131823 Orthophotos: oriXU-RS180_20180823_092018_494_29939_131824 - - through - - oriXU-RS180_20180823_094753_186_39571_131910 Orthophotos: oriXU-RS180_20180823_094802_028_39683_131911 - - through - - oriXU-RS180_20180823_100555_031_49315_131997 Orthophotos: oriXU-RS180_20180823_100608_444_49427_131998 - - through - - oriXU-RS180_20180823_103840_826_59059_132084 Orthophotos: oriXU-RS180_20180823_103854_252_59171_132085 - - through - - oriXU-RS180_20180823_110332_786_68803_132171 Orthophotos: oriXU-RS180_20180823_110347_262_68915_132172 - - through - - oriXU-RS180_20180823_113325_066_78547_132258 Orthophotos: oriXU-RS180_20180824_075149_667_1043_132267 - - through - - oriXU-RS180_20180824_082529_427_11011_132356 Orthophotos: oriXU-RS180_20180824_082545_244_11123_132357 - - through - - oriXU-RS180_20180824_085107_643_21091_132446 Orthophotos: oriXU-RS180_20180824_085121_953_21203_132447 - - through - - oriXU-RS180_20180824_091336_364_31171_132536 Orthophotos: oriXU-RS180_20180824_091349_950_31283_132537 - - through - - oriXU-RS180_20180824_093946_911_41251_132626 Orthophotos: oriXU-RS180_20180824_093959_995_41363_132627 - - through - - oriXU-RS180_20180824_100324_915_52003_132722 Orthophotos: oriXU-RS180_20180824_100339_616_52115_132723 - - through - - oriXU-RS180_20180824_103128_350_62867_132819 Orthophotos: oriXU-RS180_20180824_103142_148_62979_132820 - - through - - oriXU-RS180_20180824_105532_562_72947_132909 Black Creek Rapid Geomorphic Assessment, Allen County, Indiana Orthophotos: oriXU-RS180_20180823_110347_262_68915_132172 - - through - - oriXU-RS180_20180823_113325_066_78547_132258 Orthophotos: oriXU-RS180_20180823_103854_252_59171_132085 - - through - - oriXU-RS180_20180823_110332_786_68803_132171 Orthophotos: oriXU-RS180_20180823_100608_444_49427_131998 - - through - - oriXU-RS180_20180823_103840_826_59059_132084 Orthophotos: oriXU-RS180_20180824_093959_995_41363_132627 - - through - - oriXU-RS180_20180824_100324_915_52003_132722 Orthophotos: oriXU-RS180_20180823_080451_930_707_131563 - - through - -  oriXU-RS180_20180823_082750_657_10339_131649 Orthophotos: oriXU-RS180_20180824_085121_953_21203_132447 - - through - - oriXU-RS180_20180824_091336_364_31171_132536 Orthophotos: oriXU-RS180_20180823_094802_028_39683_131911 - - through - - oriXU-RS180_20180823_100555_031_49315_131997 Orthophotos: oriXU-RS180_20180823_082803_677_10451_131650 - - through - - oriXU-RS180_20180823_085457_402_20083_131736 Orthophotos: oriXU-RS180_20180824_075149_667_1043_132267 - - through - - oriXU-RS180_20180824_082529_427_11011_132356 Orthophotos: oriXU-RS180_20180824_082545_244_11123_132357 - - through - - oriXU-RS180_20180824_085107_643_21091_132446 Orthophotos: oriXU-RS180_20180824_103142_148_62979_132820 - - through - - oriXU-RS180_20180824_105532_562_72947_132909 Orthophotos: oriXU-RS180_20180824_100339_616_52115_132723 - - through - - oriXU-RS180_20180824_103128_350_62867_132819 Orthophotos: oriXU-RS180_20180824_091349_950_31283_132537 - - through - - oriXU-RS180_20180824_093946_911_41251_132626 Orthophotos: oriXU-RS180_20180823_085511_671_20195_131737 - - through - - oriXU-RS180_20180823_092005_701_29827_131823 Orthophotos: oriXU-RS180_20180823_092018_494_29939_131824 - - through - - oriXU-RS180_20180823_094753_186_39571_131910 Object-Based Image Analysis Detection of Aquatic Vegetation, Lake Erie, Western Basin, 2018 2018 Western Lake Erie 4-Band Orthophotos Condition of Surgical Acoustic Tag Incisions in Recaptured Lake Erie Walleye (2011-2016) 2013 Ecological Process Monitoring in Western Basin Lake Erie data