Skip to main content
Advanced Search

Filters: Tags: Western Lake Erie (X) > partyWithName: Upper Midwest Environmental Sciences Center (X)

28 results (24ms)   

View Results as: JSON ATOM CSV
thumbnail
The Maumee River transports huge loads of nitrogen (N) and phosphorus (P) to Lake Erie. The increased concentrations of N and P are causing eutrophication of the lake, creating hypoxic zones, and contributing to phytoplankton blooms. It is hypothesized that the P loads are a major contributor to harmful algal blooms that occur in the western basin of Lake Erie, particularly in summer. The Maumee River has been identified by the United States Environmental Protection Agency as a priority watershed where action needs to be taken to reduce nutrient loads. This study quantified rates of biogeochemical processes affecting downstream flux of N and P by 1) measuring indices of potential sediment P retention and 2) measuring...
thumbnail
This dataset contains the recorded water temperatures of specific sites in western Lake Erie during the summer of 2014.
thumbnail
This dataset contains the recorded water temperatures of specific sites in western Lake Erie, Saginaw Bay in Lake Huron, and Grand Traverse Bay in Lake Michigan during the summer of 2015. Sites with just a number were from Lake Erie. Sites from Grand Traverse Bay have a GTB prefix; Saginaw Bay= SB prefix.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
In this dataset, we report on the biomass and abundance of invertebrates collected on artificial substrates in the Great Lakes from 2013-2016. Sampling effort was focused on the western basin of Lake Erie, but also includes some sampling from Green Bay (Lake Michigan), Grand Traverse Bay (Lake Michigan) and Saginaw Bay (Lake Huron). In 2015 and 2016, we increased the number of taxa that we quantified. Round Hester-Dendy samplers were used as artificial substrates. Substrates were deployed at sites where unionid mussels were also deployed in cages.
thumbnail
Microcystins (MC) are a class of cyanotoxins produced by many cyanobacteria taxa. Although toxic to metazoans, the evolution of microcystin pre-dates the appearance of metazoans, and so MC did not originate as a toxin to potential metazoan grazers. One hypothesized functional role of microcystin is the management and acquisition of metals, several of which form complexes with MC intracellularly. Metals are often used to build enzymes within the cell that allow cyanobacteria to use non-preferred nitrogen (N) and phosphorus (P) sources, such as nitrate, urea and organic P. If trace metals are in low supply, primary producers may become limited because of their inability to access these non-preferred N and P forms....
thumbnail
This dataset contains the recorded water temperatures of specific sites located in western Lake Erie and the rivermouths of the Fox River and Duck Creek as they flow into Green Bay in Lake Michigan during the summer of 2016. Sites with just a number were from Lake Erie. Sites from Green Bay = GB prefix; Fox Rivermouth = FX prefix; Duck Creek rivermouth = DK prefix.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
The Maumee River transports huge loads of nitrogen (N) and phosphorus (P) to Lake Erie. The increased concentrations of N and P are causing eutrophication of the lake, creating hypoxic zones, and contributing to phytoplankton blooms. It is hypothesized that the P loads are a major contributor to harmful algal blooms that occur in the western basin of Lake Erie, particularly in summer. The Maumee River has been identified by the United States Environmental Protection Agency as a priority watershed where action needs to be taken to reduce nutrient loads. This study quantified rates of biogeochemical processes affecting downstream flux of N and P by 1) measuring indices of potential sediment P retention and 2) measuring...
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
The USGS developed the second in a series of informative spatial distribution datasets of submersed aquatic vegetation (SAV) in the western basin of Lake Erie. The second dataset was developed by object-based image analysis of high-resolution imagery (US waters < 6 meters deep) collected during peak biomass in 2018 to allow assessments of changes in SAV distribution. Assessing SAV abundance may contribute to inform the long-term impacts of Grass Carp, Common Carp, eutrophication, wind fetch and sedimentation on vegetation communities throughout Lake Erie and the impact these stressors may have on other organisms in the ecosystem. These data may also help inform the deployment of toxic bait deployments targeting...


map background search result map search result map Object-Based Image Analysis Detection of Aquatic Vegetation, Lake Erie, Western Basin, 2018 Biomass and abundance of invertebrates collected on artificial substrates in the Great Lakes, 2013-2016 Water temperature data from the summer of 2014 in western Lake Erie Water temperature data from the summer of 2015 in Great Lakes bays Water temperature data from the summer of 2016 in Great Lakes bays 2018 Western Lake Erie 4-Band Orthophotos Orthophotos: oriXU-RS180_20180823_080451_930_707_131563 - - through - -  oriXU-RS180_20180823_082750_657_10339_131649 Orthophotos: oriXU-RS180_20180823_085511_671_20195_131737 - - through - - oriXU-RS180_20180823_092005_701_29827_131823 Orthophotos: oriXU-RS180_20180823_092018_494_29939_131824 - - through - - oriXU-RS180_20180823_094753_186_39571_131910 Orthophotos: oriXU-RS180_20180823_094802_028_39683_131911 - - through - - oriXU-RS180_20180823_100555_031_49315_131997 Orthophotos: oriXU-RS180_20180823_103854_252_59171_132085 - - through - - oriXU-RS180_20180823_110332_786_68803_132171 Orthophotos: oriXU-RS180_20180823_110347_262_68915_132172 - - through - - oriXU-RS180_20180823_113325_066_78547_132258 Orthophotos: oriXU-RS180_20180824_075149_667_1043_132267 - - through - - oriXU-RS180_20180824_082529_427_11011_132356 Orthophotos: oriXU-RS180_20180824_082545_244_11123_132357 - - through - - oriXU-RS180_20180824_085107_643_21091_132446 Orthophotos: oriXU-RS180_20180824_085121_953_21203_132447 - - through - - oriXU-RS180_20180824_091336_364_31171_132536 Orthophotos: oriXU-RS180_20180824_093959_995_41363_132627 - - through - - oriXU-RS180_20180824_100324_915_52003_132722 Orthophotos: oriXU-RS180_20180824_103142_148_62979_132820 - - through - - oriXU-RS180_20180824_105532_562_72947_132909 Great Lakes Restoration Initiative: Nutrient cycling in riverbed sediment in the Maumee River Basin, 2019 and 2021 Data (ver. 2.0, March 2024) Great Lakes Restoration Initiative: Nutrient cycling in riverbed sediment in the Maumee River Basin, 2021 Data (ver. 2.0, March 2024) Response of natural phytoplankton communities from Green Bay (Lake Michigan) and Maumee Bay (Lake Erie) to laboratory manipulations of nutrient and trace metal availability during late summer 2018 Orthophotos: oriXU-RS180_20180823_110347_262_68915_132172 - - through - - oriXU-RS180_20180823_113325_066_78547_132258 Orthophotos: oriXU-RS180_20180823_103854_252_59171_132085 - - through - - oriXU-RS180_20180823_110332_786_68803_132171 Orthophotos: oriXU-RS180_20180824_093959_995_41363_132627 - - through - - oriXU-RS180_20180824_100324_915_52003_132722 Orthophotos: oriXU-RS180_20180823_080451_930_707_131563 - - through - -  oriXU-RS180_20180823_082750_657_10339_131649 Orthophotos: oriXU-RS180_20180824_085121_953_21203_132447 - - through - - oriXU-RS180_20180824_091336_364_31171_132536 Orthophotos: oriXU-RS180_20180823_094802_028_39683_131911 - - through - - oriXU-RS180_20180823_100555_031_49315_131997 Orthophotos: oriXU-RS180_20180824_075149_667_1043_132267 - - through - - oriXU-RS180_20180824_082529_427_11011_132356 Orthophotos: oriXU-RS180_20180824_082545_244_11123_132357 - - through - - oriXU-RS180_20180824_085107_643_21091_132446 Orthophotos: oriXU-RS180_20180824_103142_148_62979_132820 - - through - - oriXU-RS180_20180824_105532_562_72947_132909 Water temperature data from the summer of 2014 in western Lake Erie Orthophotos: oriXU-RS180_20180823_085511_671_20195_131737 - - through - - oriXU-RS180_20180823_092005_701_29827_131823 Orthophotos: oriXU-RS180_20180823_092018_494_29939_131824 - - through - - oriXU-RS180_20180823_094753_186_39571_131910 Object-Based Image Analysis Detection of Aquatic Vegetation, Lake Erie, Western Basin, 2018 2018 Western Lake Erie 4-Band Orthophotos Great Lakes Restoration Initiative: Nutrient cycling in riverbed sediment in the Maumee River Basin, 2019 and 2021 Data (ver. 2.0, March 2024) Great Lakes Restoration Initiative: Nutrient cycling in riverbed sediment in the Maumee River Basin, 2021 Data (ver. 2.0, March 2024) Water temperature data from the summer of 2015 in Great Lakes bays Water temperature data from the summer of 2016 in Great Lakes bays Response of natural phytoplankton communities from Green Bay (Lake Michigan) and Maumee Bay (Lake Erie) to laboratory manipulations of nutrient and trace metal availability during late summer 2018 Biomass and abundance of invertebrates collected on artificial substrates in the Great Lakes, 2013-2016