Skip to main content
Advanced Search

Filters: Tags: Wildfire (X)

587 results (71ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. The USGS conducts post-fire debris-flow hazard assessments for select fires in the Western U.S. We use geospatial data related to basin morphometry, burn severity, soil properties, and rainfall characteristics to estimate the probability and volume of debris flows that may occur in response to a design storm.
Mountain streams provide important habitats for many species, but their faunas are especially vulnerable to climate change because of ectothermic physiologies and movements that are constrained to linear networks that are easily fragmented. Effectively conserving biodiversity in these systems requires accurate downscaling of climatic trends to local habitat conditions, but downscaling is difficult in complex terrains given diverse microclimates and mediation of stream heat budgets by local conditions. We compiled a stream temperature database (n = 780) for a 2500-km river network in central Idaho to assess possible trends in summer temperatures and thermal habitat for two native salmonid species from 1993 to 2006....
thumbnail
This dataset is a raster of predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average) , and then projecting that niche into the future. The future timeslices used are 2020's, which is an average of 2020-2029, and 2050's which is 2050-2059. The Values 1-6 show the degree of model agreement (For example: areas with a value of 1 is where only 1 GCM predicted suitability; pixels with a value of 6 are where 6 GCMs predicted suitability, ect). *see Maxent output pdfs for more details about model inputs and settings.
thumbnail
This dataset is a raster of predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average) , and then projecting that niche into the future. The future timeslices used are 2020's, which is an average of 2020-2029, and 2050's which is 2050-2059. The Values 1-6 show the degree of model agreement (For example: areas with a value of 1 is where only 1 GCM predicted suitability; pixels with a value of 6 are where 6 GCMs predicted suitability, ect). *see Maxent output pdfs for more details about model inputs and settings.
thumbnail
This dataset is a raster of predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average) , and then projecting that niche into the future. The future timeslices used are 2020's, which is an average of 2020-2029, and 2050's which is 2050-2059. The Values 1-6 show the degree of model agreement (For example: areas with a value of 1 is where only 1 GCM predicted suitability; pixels with a value of 6 are where 6 GCMs predicted suitability, ect). *see Maxent output pdfs for more details about model inputs and settings.
thumbnail
This dataset is a raster of predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average) , and then projecting that niche into the future. The future timeslices used are 2020's, which is an average of 2020-2029, and 2050's which is 2050-2059. The Values 1-6 show the degree of model agreement (For example: areas with a value of 1 is where only 1 GCM predicted suitability; pixels with a value of 6 are where 6 GCMs predicted suitability, ect). *see Maxent output pdfs for more details about model inputs and settings.
thumbnail
This dataset is a raster of predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average) , and then projecting that niche into the future. The future timeslices used are 2020's, which is an average of 2020-2029, and 2050's which is 2050-2059. The Values 1-6 show the degree of model agreement (For example: areas with a value of 1 is where only 1 GCM predicted suitability; pixels with a value of 6 are where 6 GCMs predicted suitability, ect). *see Maxent output pdfs for more details about model inputs and settings.
thumbnail
This dataset is a raster of predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average) , and then projecting that niche into the future. The future timeslices used are 2020's, which is an average of 2020-2029, and 2050's which is 2050-2059. The Values 1-6 show the degree of model agreement (For example: areas with a value of 1 is where only 1 GCM predicted suitability; pixels with a value of 6 are where 6 GCMs predicted suitability, ect). *see Maxent output pdfs for more details about model inputs and settings.
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2010. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2011. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) project assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (includes wildfire, wildland fire use, and prescribed fire) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 through 2010. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This...
thumbnail
The FSim burn probability was used to determine the burn probability of the white sturgeon range in the ecoregion. This layer was used to examine wildfire risk to areas within the white sturgeon range.
thumbnail
Monitoring Trends in Burn Severity Data (MTBS) distributes three burn and fire related datasets (Burned Area Boundaries, Fire Occurrence Dataset, Burn Severity Mosaics). MTBS also provides web map services (WMS) as a method to access the national MTBS geospatial datasets. All three types of the seamless national datasets are published as an Open Geospatial Consortium (OGC)-compliant WMS.
Solar radiation grids were produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This solar radiation grid was produced using the Area Solar Radiation tool in ArcGIS 10.1, using inputs of the associated 30m DEM.
Solar radiation grids were produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This solar radiation grid was produced using the Area Solar Radiation tool in ArcGIS 10.1, using inputs of the associated 30m DEM.
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...


map background search result map search result map BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2010) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (1999) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2005) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2004) BLM REA NGB 2011 Fsim Burn Probability in White Sturgeon Areas (4km) BLM REA NWP 2011 FI C 2000 MTBS BLM REA MBR 2010 Modeled Future Bioclimate 2050 - Bighorn Sheep BLM REA MBR 2010 Modeled Future Bioclimate 2050 - Sonoran Mojave Mixed Salt Desert Scrub BLM REA MBR 2010 Modeled Future Bioclimate 2050 - Inter-Mountain Basins Mixed Salt Desert Scrub BLM REA MBR 2010 Modeled Future Bioclimate 2050 - Mojave Mid Elevation Mixed Desert Scrub BLM REA MBR 2010 Modeled Future Bioclimate 2050 - Swainsons Hawk BLM REA CBR 2010 Modeled Future Bioclimate 2050 - Mule Deer Class D Winter BLM REA CBR 2010 mtbs perims Clip CBR Monitoring Trends in Burn Severity Data (MTBS) Downloadable Data and Map Services BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2010) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (1999) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2005) BLM REA MAR 2012 CONUS Thematic Burn Severity Mosaic (2004) BLM REA CBR 2010 mtbs perims Clip CBR BLM REA NGB 2011 Fsim Burn Probability in White Sturgeon Areas (4km) BLM REA NWP 2011 FI C 2000 MTBS BLM REA MBR 2010 Modeled Future Bioclimate 2050 - Bighorn Sheep BLM REA MBR 2010 Modeled Future Bioclimate 2050 - Sonoran Mojave Mixed Salt Desert Scrub BLM REA MBR 2010 Modeled Future Bioclimate 2050 - Inter-Mountain Basins Mixed Salt Desert Scrub BLM REA MBR 2010 Modeled Future Bioclimate 2050 - Mojave Mid Elevation Mixed Desert Scrub BLM REA MBR 2010 Modeled Future Bioclimate 2050 - Swainsons Hawk BLM REA CBR 2010 Modeled Future Bioclimate 2050 - Mule Deer Class D Winter Monitoring Trends in Burn Severity Data (MTBS) Downloadable Data and Map Services