Skip to main content
Advanced Search

Filters: Tags: Wildlife and Plants (X)

1,144 results (175ms)   

Date Range
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
This project snapshot provides a brief overview of the project "Assessing the Potential Effects of Climate Change on Vegetation in Hawai`i Volcanoes National Park".
Abstract (from A comprehensive understanding of the spatial, seasonal, and diurnal patterns in cloud cover frequency over the Hawaiian Islands was developed using high-resolution image data from the National Aeronautics and Space Administration’s Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard the Terra and Aqua satellites. The Terra and Aqua MODIS cloud mask products, which provide the confidence that a given 1-km pixel is unobstructed by cloud, were obtained for the entire MODIS time series (10-plus years) over the main Hawaiian Islands. Monthly statistics were generated from the daily cloud mask data, including mean cloud cover...
A beautiful plant found only on Haleakala may become rarer. A recent study coauthored by UH researcher Paul Krushelnycky shows changing climate patterns allowing fog and rain to reach higher elevations are threatening the plant but he cautions all is not lost. He joined us in our studio to tell us more. Paul is currently Assistant Researcher, at the College of Tropical Agriculture and Human Resources at the University of Hawaii in Manoa.
This downloadable PDF research feature summarizes the Pacific Islands Climate Science Center-supported project "Modeling Climate-Driven Changes to Dominant Vegetation in the Hawaiian Islands".
This data set describes the predicted daily climate (temperature and rainfall) for low, mid, and high-elevations on Mona Loa, Island of Hawaii from 2098-2100. Climate predictions are based on 3 alternative climate scenarios (RCP 4.5, A1B, and RCP 8.5) - see Liao et al. 2015 for more details and climate references. The predicted daily risk of susceptible Hawaiian honeycreepers are based on the daily climate data, mosquito abundance and other factors. Also see Samuel et al. 2011 The dynamics, transmission, and population impacts of avian malaria in native Hawaiian birds: a modeling approach. Ecological Applications 21:2960-2973 for description of the epidemiological model used for avian malaria risk predictions.
Abstract (from Background Detailed assessments of species responses to climate change are uncommon, owing to the limited nature of most ecological and local climate data sets. Exceptions, such as the case of the Haleakalā silversword, can provide important insights into the complexity of biological responses to changing climate conditions. We present a time series of decadal population censuses, combined with a pair of early population projections, which together span the past 80 years of demographic history for this alpine plant. Results The time series suggests a strong population recovery from the 1930s through the 1980s, likely...
For the past few years, “king tides,” or the highest tides of the year, have been occurring more frequently and significantly affecting coastal environments across Hawaiʻi. Now, disappearing beaches and waves crashing over roadways are seemingly the “new normal.” In response, the state of Hawaiʻi is implementing adaptation strategies to combat tidal flooding in coastal areas. While flood management strategies are being implemented in urban areas, less is known about how tidal flooding, and associated inundation into surface and groundwater, might influence watershed dynamics and the native animals that depend on estuarine environments where freshwater meets the sea. Efforts for biocultural restoration of ecosystem...
The TopoWx ("Topography Weather") gridded dataset contains historical 30-arcsec resolution (~800-m) interpolations of minimum and maximum topoclimatic air temperature for the conterminous U.S. Using both DEM-based variables and MODIS land skin temperature as predictors of air temperature, interpolation procedures include moving window regression kriging and geographically weighted regression. This temperature set was created independently of the NCCWSC funded project, "Can Camouflage Keep up with Climate Change? Connecting Downscaled Climate Models to Adaptation for a Key Forest Species", but was in part motivated by the project.
Abstract (from Freshwater mussels (Unionidae) are a highly imperilled faunal group. One critical threat is thermal sensitivity, because global climate change and other anthropogenic activities contribute to increasing stream temperature and altered hydrologic flow that may be detrimental to freshwater mussels. We incorporated four benthic environmental components – temperature, sediment, water level (a surrogate for flow) and a vertical thermal gradient in the sediment column – in laboratory mesocosm experiments with juveniles of two species of freshwater mussels (Lampsilis abrupta and Lampsilis radiata) and tested their effects on survival, burrowing...
Abstract (from Urban habitats are characterized by impervious surfaces, which increase temperatures and reduce water availability to plants. The effects of these conditions on herbivorous insects are not well understood, but may provide insight into future conditions. Three primary hypotheses have been proposed to explain why multiple herbivorous arthropods are more abundant and damaging in cities, and support has been found for each. First, less complex vegetation may reduce biological control of pests. Second, plant stress can increase plant quality for pests. And third, urban warming can directly increase pest fitness and abundance. These...
These data represent the extent of urbanization (for the year indicated) predicted by the model SLEUTH, developed by Dr. Keith C. Clarke, at the University of California, Santa Barbara, Department of Geography and modified by David I. Donato of the United States Geological Survey (USGS) Eastern Geographic Science Center (EGSC). Further model modification and implementation was performed at the Biodiversity and Spatial Information Center at North Carolina State University

map background search result map search result map Predicted climate and avian malaria risk to Hawaiian honeycreepers on the Island of Hawaii from 2098-2100 Effect of Extreme Tidal Events on Future Sea-Level Rise Scenarios for He‘eia Fish Communities undergoing Ahupua‘a Restoration Predicted climate and avian malaria risk to Hawaiian honeycreepers on the Island of Hawaii from 2098-2100 Effect of Extreme Tidal Events on Future Sea-Level Rise Scenarios for He‘eia Fish Communities undergoing Ahupua‘a Restoration