Skip to main content
Advanced Search

Filters: Tags: Wisconsin (X) > Extensions: Citation (X)

21 results (45ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Synopsis: This article outlines how wetlands can significantly reduce flooding in the Upper Mississippi watershed. The authors first provide a historical context by estimating the original and lost wetland storage capacities of the Upper Mississippi and Missouri River Basins. Historically, about 10% of the basin would have been classified as wetland in 1780. By 1980, wetland acreage had been reduced to only 4% of the basin, representing about 26 million acres of wetlands eliminated since 1780. The area of wetland restoration required to reduce the risk of future flooding adequately was estimated based on the total amount of excess floodwater beyond bank-full discharge that passed through the City of St. Louis during...
Conclusions:Wetlands and riparian zones should be strategically placed in watersheds to optimize nitrogen removal, as, for example, in tile-drained farmlands prone to high concentrations of nitrateThresholds/Learnings:Restoring 10 million hectares of riparian zones and wetlands, representing 3.4% of the Mississippi River basin, would reduce nitrogen in the Mississippi River Basin and its tributaries by an average of 40%
thumbnail
Fish occurrence data to support high-resolution distribution models and test various community and macroecological hypotheses have not been available at the national scale. We present IchthyMaps, a database of high-quality historical fish occurrences covering fishes of the conterminous United States. Designed on the principles of metacommunity ecology, IchthyMaps is a compilation of presence records from atlases up to 1990, at the resolution of the 1:100,000 National Hydrography Database Plus (NHDPlus) inter-confluence stream segment, readily aggregated into hierarchically coarser units (e.g. hydrologic unit code 8-digit and 12-digit watersheds). IchthyMaps contains about 606,550 presence records for 1,038 species...
Categories: Data, Publication; Types: Citation; Tags: Alabama, Arizona, Arkansas, Biological Data, Biological sampling, All tags...
The removal of the numerous ageing dams in the United States has become an important stream restoration technique. The extent to which the ecological damage done to streams by dams is reversed upon removal is unknown, especially on decadal time scales. The objectives of this study were to determine if macroinvertebrate assemblages within rivers recover following the removal of a dam and to estimate the time needed for recovery. A space‐for‐time substitution approach was used on eight rivers in various stages of recovery following a dam removal, ranging from <1 to 40 years post‐removal. Within each river, macroinvertebrates were sampled in a zone unaffected by the dam removal (reference zone) and two zones impacted...
thumbnail
Comprehensive wetland inventories are an essential tool for wetland management, but developing and maintaining an inventory is expensive and technically challenging. Funding for these efforts has also been problematic. Here we describe a large-area application of a semi-automated processused to update a wetland inventory for east-central Minnesota. The original inventory for this area was the product of a laborintensive, manual photo-interpretation process. The present application incorporated high resolution, multi-spectral imagery from multiple seasons; high resolution elevation data derived from lidar; satellite radar imagery; and other GIS data. Map production combined image segmentation and random forest classification...
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Conclusions: Successional changes resulting from a legacy of fire suppression and other agricultural and access disturbances combine to create the current hetergeneous landscape mosaic. Thresholds/Learnings: Synopsis: Disturbance is considered to be a major factor influencing landscape pattern and vegetation composition. However, the presettlement vegetation composition of three Ohio (U.S.A) counties was controlled largely by soil texture, soil drainage, and topography. In most cases, both disturbance regime and local site conditions can explain presettlement landscape pattern. This study examines the roles of edaphic conditions landscape features such as topography, and fire in contributing to (1) the abundance,...
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
Although ?70 dams have been decommissioned in Wisconsin over the past 30 y, little is known about the physical and ecological effects of dam removal on riverine ecosystems. The purpose of our study was to document changes in channel form and macroinvertebrate assemblages following the removal of a low-head, run-of-river dam from the Baraboo River,Wisconsin, in January 2000. We surveyed cross sections and collected benthic macroinvertebrate samples in 6 reaches (an upstream reference reach, reaches immediately above and below the dam that was to be removed, and sequential unimpounded and impounded reaches further downstream) in a multiple-dam sys- tem. Surveys were conducted in December 1999, before dam removal,...
The lack of management experience at the landscape scale and the limited feasibility of experiments at this scale have increased the use of scenario modeling to analyze the effects of different management actions on focal species. However, current modeling approaches are poorly suited for the analysis of viability in dynamic landscapes. Demographic (e.g., metapopulation) models of species living in these landscapes do not incorporate the variability in spatial patterns of early successional habitats, and landscape models have not been linked to population viability models. We link a landscape model to a metapopulation model and demonstrate the use of this model by analyzing the effect of forest management options...
Dams create barriers to fish migration and dispersal in drainage basins, and the removal of dams is often viewed as a means of increasing habitat availability and restoring migratory routes of several fish species. However, these barriers can also isolate and protect native taxa from aggressive downstream invaders.We examined fish community composition two years prior to and two years after the removal of a pair of low-head dams from Boulder Creek,Wisconsin, U.S.A. in 2003 to determine if removal of these potential barriers affected the resident population of native brook trout (Salvelinus fontinalis). Despite the presence of other taxa in the downstream reaches, and in other similar streams adjacent to the Boulder...
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
Previous studies of vegetation establishment in dam removal sites have shown that natural vegetation community establishment is highly variable and frequently includes species often considered undesirable in restorations. In this article, we examined two case studies where dam removal sites were planted with native species following dam removal in an effort to promote native species establishment and exclude invasive species. Some planted species established soon after the dam removals, but surveys four years later showed a decline in planted species and an increase in non-native species. In both cases, reed canarygrass (Phalaris arundinacea) became well established in the interval between surveys. A seedbank analysis...
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.
thumbnail
Synopsis: Agronomic intensification has transformed many agricultural landscapes into expansive monocultures with little natural habitat. A pervasive concern is that such landscape simplification results in an increase in insect pest pressure, and thus an increased need for insecticides. We tested this hypothesis across a range of cropping systems in the Midwestern United States, using remotely sensed land cover data, data from a national census of farm management practices, and data from a regional crop pest monitoring network. We found that, independent of several other factors, the proportion of harvested cropland treated with insecticides increased with the proportion and patch size of cropland and decreased...
thumbnail
Separate data for floodplain elevation and bathymetry were collected on the Upper Mississippi River System (UMRS) by the US Army Corps of Engineers (USACE), Upper Mississippi River Restoration (UMRR) program. While many information needs can be met by using these data separately, in many cases seamless elevation data across the river and its floodplain are needed. This seamless elevation surface was generated by merging lidar (i.e., floodplain elevation) and bathymetry data. Merging the data required special processing in the areas of transition between the two sources of data.


map background search result map search result map Flood reduction through wetand restoration: the Upper Mississippi River Basin as a case history. Effects of site, landscape features, and fire regime on vegetation patterns in presettlement southern Wisconsin Agricultural landscape simplification and insecticide use in the Midwestern United States. Historical Stream Fish Distribution Database for the Conterminous United States (1950-1990): IchthyMaps UMRR Pool 03 Topobathy UMRR Pool 04 Topobathy UMRR Pool 05 Topobathy UMRR Pool 07 Topobathy UMRR Pool 08 Topobathy UMRR Pool 09 Topobathy UMRR Pool 13 Topobathy UMRR Pool 21 Topobathy UMRR Pool 05a Topobathy Publication: A Semi-Automated, Multi-Source Data Fusion Update of aWetland Inventory for East-Central Minnesota UMRR Pool 05a Topobathy UMRR Pool 05 Topobathy UMRR Pool 21 Topobathy UMRR Pool 07 Topobathy UMRR Pool 08 Topobathy UMRR Pool 03 Topobathy UMRR Pool 09 Topobathy Effects of site, landscape features, and fire regime on vegetation patterns in presettlement southern Wisconsin UMRR Pool 13 Topobathy UMRR Pool 04 Topobathy Publication: A Semi-Automated, Multi-Source Data Fusion Update of aWetland Inventory for East-Central Minnesota Flood reduction through wetand restoration: the Upper Mississippi River Basin as a case history. Agricultural landscape simplification and insecticide use in the Midwestern United States. Historical Stream Fish Distribution Database for the Conterminous United States (1950-1990): IchthyMaps