Skip to main content
Advanced Search

Filters: Tags: Wyoming (X) > partyWithName: U.S. Geological Survey (X)

791 results (14ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey's (USGS) SPAtially Referenced Regression On Watershed attributes (SPARROW) model was used to aid in the interpretation of monitoring data and simulate streamflow and water-quality conditions in streams across the Pacific Region of the Unites States. SPARROW is a hybrid empirical/process-based mass balance model that can be used to estimate the major sources and environmental factors that affect the long-term supply, transport, and fate of contaminants in streams. The spatially explicit model structure is defined by a river reach network coupled with contributing catchments. The model is calibrated by statistically relating watershed sources and transport-related properties to monitoring-based...
thumbnail
wy_lvl7_coarsescale: Wyoming hierarchical cluster level 7 (coarse-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
These data were compiled for a manuscript in which 1) we develop a water temperature model for the major river segments and tributaries of the Colorado River basin, including the Colorado, Green, Yampa, White, and San Juan rivers; 2) we link modeled water temperature to fish population data to predict the probability native and nonnative species will be common in the future in a warming climate; and 3) assess the degree to which dams create thermal discontinuity in summer in river segments across the western US. Per goal #1, we developed a water temperature model using data spanning 1985-2015 that predicts water temperature every 1 mile (1.6-km) in rivers both now and in the future due to the potential influence...
Tags: Aquatic Biology, Arizona, Arkansas River basin, Black Rocks, Colorado, All tags...
thumbnail
wy_lvl2_finescale: Wyoming hierarchical cluster level 2 (fine-scale) for Greater sage-grouse We developed a hierarchical clustering approach that identifies biologically relevant landscape units that can 1) be used as a long-term population monitoring framework, 2) be repeated across the Greater sage-grouse range, 3) be used to track the outcomes of local and regional populations by comparing population changes across scales, and 4) be used to inform where to best spatially target studies that identify the processes and mechanisms causing population trends to change among spatial scales. The spatial variability in the amount and quality of habitat resources can affect local population success and result in different...
thumbnail
The importance of monitoring shrublands to detect and understand changes through time is increasingly recognized as critical to management. This dataset focuses on ecological change observation over ten years of field observation at 134 plots within two sites that are located in Southwestern of Wyoming, USA from 2008-2018. At sites 1 and 3, 134 long-term field observation plots were measured annually from 2008 to 2018. General plot locations were selected in 2006 using segments and spectral clusters on QuickBird imagery to identify the best locations for representing the variability of the entire site (one QuickBird image). Ground measurements were conducted using ocular measurements with cover was estimated from...
thumbnail
These data represent simulated soil temperature and moisture conditions for current climate, and for future climate represented by all available climate models at two time periods during the 21st century. These data were used to: 1) quantify the direction and magnitude of expected changes in several measures of soil temperature and soil moisture, including the key variables used to distinguish the regimes used in the R and R categories; 2) assess how these changes will impact the geographic distribution of soil temperature and moisture regimes; and 3) explore the implications for using R and R categories for estimating future ecosystem resilience and resistance.
thumbnail
This data set includes the relative production scenarios for eight (8) grass species based on linear models from Epstein, et al. (1998). We selected two indicator species for each community: shortgrass prairie: blue grama (Bouteloua gracilis; BOGR) and buffalo grass (Bouteloua dactyloides; BODA); mixedgrass prairie: sideoats grama (Bouteloua curtipendula; BOCU) and little bluestem (Schizachyrium scoparium; SCSC); tallgrass prairie: big bluestem (Andropogon gerardii; ANGE) and Indiangrass (Sorghastrum nutans; SONU); and semiarid grasslands: black grama (Bouteloua eriopoda; BOER) and tobosagrass (Pleuraphis mutica; PLMU). Soil texture (percent by weight) came from the Earth Systems Science Center (2008) which provided...
Geographic distribution data were collected based on county level occurrences (or converted from point occurrences to county level occurrences) within the five focal states (Minnesota, North Dakota, South Dakota, Nebraska & Iowa) and each U.S. state or Canadian province bordering those focal states (Wisconsin, Illinois, Missouri, Kansas, Wyoming, & Montana in the USA and Saskatchewan, Ontario & Manitoba in Canada).
thumbnail
The U.S. Geological Survey (USGS) has developed and implemented an algorithm that identifies burned areas in dense time series of Landsat image stacks to produce the Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm makes use of predictors derived from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference conditions. Outputs of the BAECV algorithm consist of pixel-level burn probabilities for each Landsat scene, and annual burn probability, burn classification, and burn date composites. These products were generated for the conterminous United States for 1984 through 2015. These data are also available for download at https://rmgsc.cr.usgs.gov/outgoing/baecv/BAECV_CONUS_v1.1_2017/...
thumbnail
Near-surface site characteristics are critical for accurately modeling ground motion, which in turn influences seismic hazard analysis and design of critical infrastructure. Currently, there are many strong motion accelerometers within the Advanced National Seismic System (ANSS) that are missing this information. We use a Geographic Information Systems (GIS) based framework to intersect the site coordinates of approximately 5,500 ANSS accelerometers located throughout the United States and its territories with geology and velocity information. We consider: (1) surficial geology from digitized geologic maps (Horton, 2017; Wilson et al., 2015; Sherrod et al., 2007; Bawiec, 1999; Saucedo, 2005; Bedrossian et al., 2012;...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: ANSS, Alabama, American Samoa, Arizona, Arkansas, All tags...
This data release documents proposed updates to geologic inputs (faults) for the upcoming 2023 National Seismic Hazard Model (NSHM). This version (1.0) conveys differences between 2014 NSHM fault sources and those recently released in the earthquake geology inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 data release by Hatem et al. (2021). A notable difference between the 2014 and 2023 datasets is that slip rates are provided at points for 2023 instead of generalized along the entire fault section length as in 2014; consequently, slip rates are not provided for fault sections in the draft 2023 dataset. Geospatial data (shapefile, kml and geojson) are provided in this data release with...
thumbnail
The High Plains aquifer extends from approximately 32 to 44 degrees north latitude and 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital dataset consists of a raster of water-level changes for the High Plains aquifer, predevelopment (about 1950) to 2019. It was created using water-level measurements from 2,741 wells measured in both the predevelopment period (about 1950) and in 2019, the latest available static water level measured in 2015 to 2018 from 71 wells in New Mexico and using other published information on water-level change in areas with few water-level...
thumbnail
This dataset provides early estimates of 2021 exotic annual grasses (EAG) fractional cover predicted on May 3rd. We develop and release EAG fractional cover map with an emphasis on cheatgrass (Bromus tectrorum) but it also includes number of other species, i.e., Bromus arvensis L., Bromus briziformis, Bromus catharticus Vahl, Bromus commutatus, Bromus diandrus, Bromus hordeaceus L., Bromus japonicus, Bromus madritensis L., Bromus racemosus, Bromus rubens L., Bromus secalinus L., Bromus texensis (Shear) Hitchc., and medusahead (Taeniatherum caput-medusae. The dataset was generated leveraging field observations from Bureau of Land Management (BLM) Assessment, Inventory, and Monitoring data (AIM) plots; Harmonized...
thumbnail
Probability map of Cheatgrass occurrence in relation to vegetation, abiotic, and anthropogenic features. These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release.
thumbnail
Probability map of green-tailed towhee occurrence in relation to vegetation, abiotic, and anthropogenic features. These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release.
thumbnail
Probability map of Halogeton occurrence in relation to vegetation, abiotic, and anthropogenic features. These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release.
thumbnail
Probability map of least chipmunk occurrence in relation to vegetation, abiotic, and anthropogenic features. These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release.
thumbnail
Estimation of irrigation water use provides essential information for the management and conservation of agricultural water resources. The blue water evapotranspiration (BWET) raster dataset at 30-meter resolution is created to estimate agricultural irrigation water consumption. The dataset contains seasonal total (1 May to 30 September) BWET time series (1986 – 2020) for the croplands across the U.S. High Plains aquifer region. The BWET estimates are generated by integrating an energy-balance ET model (Operational Simplified Surface Energy Balance model) and a water-balance ET model (Vegetation ET model). BWET in croplands reflects crop consumptive use of irrigation water extracted from surface water and groundwater...
thumbnail
Climate change over the past century has altered vegetation community composition and species distributions across rangelands in the western United States. The scale and magnitude of climatic influences are largely unknown. We used fractional component cover data for rangeland functional groups and weather data from the 1985 to 2023 reference period in conjunction with soils and topography data to develop empirical models describing the spatio-temporal variation in component cover. To investigate the ramifications of future change across the western US, we extended models based on historical relationships over the reference period to model landscape effects based on future weather conditions from two emissions scenarios...
Tags: AB, AZ, Alberta, Arizona, Arizona Plateau, All tags...


map background search result map search result map Landsat Burned Area Essential Climate Variable products for the conterminous United States (1984 - 2015) Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Wyoming), Interim Potential productivity and change estimates for eight grassland species to evaluate vulnerability to climate change in the southern Great Plains Historical and 21st century soil temperature and moisture data for drylands of western U.S. and Canada SPARROW model inputs and simulated streamflow, nutrient and suspended-sediment loads in streams of the Pacific Region of the United States, 2012 Base Year (ver 1.1, June 2020) Long-term field observation of shrubland ecosystem in Wyoming, USA from 2008-2018 Water temperature models, data and code for the Colorado, Green, San Juan, Yampa, and White rivers in the Colorado River basin Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 3 Model inputs Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 County-Level Geographic Distributions for 47 Exotic Plant Species in Midwest USA and Central Canada, Compiled 2019 Early Estimates of Exotic Annual Grass (EAG) in the Sagebrush Biome, USA, May 2021, v1 Compilation of Geologic and Seismic Velocity Characteristics at Advanced National Seismic System Strong Motion Accelerometer Sites Cheatgrass probability of occurrence in the Wyoming Basins Ecoregional Assessment area Green-tailed towhee probability of occurrence in the Wyoming Basins Ecoregional Assessment area Halogeton probability of occurrence in the Wyoming Basins Ecoregional Assessment area Least chipmunk probability of occurrence in the Wyoming Basins Ecoregional Assessment area F01_hpwicpd19t_Raster dataset of mapped water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2019 Seasonal Blue Water Evapotranspiration 1986 – 2020 for the Croplands in the High Plains Aquifer Region Projections of Rangeland Fractional Component Cover Across Western Northern American Rangelands for Representative Concentration Pathways (RCP) 4.5 and 8.5 Scenarios for the 2020s, 2050s, and 2080s Time-Periods Long-term field observation of shrubland ecosystem in Wyoming, USA from 2008-2018 Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 2 (Wyoming), Interim Hierarchically nested and biologically relevant monitoring frameworks for Greater Sage-grouse, 2019, Cluster Level 7 (Wyoming), Interim Seasonal Blue Water Evapotranspiration 1986 – 2020 for the Croplands in the High Plains Aquifer Region F01_hpwicpd19t_Raster dataset of mapped water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2019 Cheatgrass probability of occurrence in the Wyoming Basins Ecoregional Assessment area Green-tailed towhee probability of occurrence in the Wyoming Basins Ecoregional Assessment area Halogeton probability of occurrence in the Wyoming Basins Ecoregional Assessment area Least chipmunk probability of occurrence in the Wyoming Basins Ecoregional Assessment area Potential productivity and change estimates for eight grassland species to evaluate vulnerability to climate change in the southern Great Plains Water temperature models, data and code for the Colorado, Green, San Juan, Yampa, and White rivers in the Colorado River basin SPARROW model inputs and simulated streamflow, nutrient and suspended-sediment loads in streams of the Pacific Region of the United States, 2012 Base Year (ver 1.1, June 2020) Projections of Rangeland Fractional Component Cover Across Western Northern American Rangelands for Representative Concentration Pathways (RCP) 4.5 and 8.5 Scenarios for the 2020s, 2050s, and 2080s Time-Periods Summary of proposed changes to geologic inputs for the U.S. National Seismic Hazard Model (NSHM) 2023, version 1.0 Early Estimates of Exotic Annual Grass (EAG) in the Sagebrush Biome, USA, May 2021, v1 Historical and 21st century soil temperature and moisture data for drylands of western U.S. and Canada Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data: 3 Model inputs County-Level Geographic Distributions for 47 Exotic Plant Species in Midwest USA and Central Canada, Compiled 2019 Landsat Burned Area Essential Climate Variable products for the conterminous United States (1984 - 2015) Compilation of Geologic and Seismic Velocity Characteristics at Advanced National Seismic System Strong Motion Accelerometer Sites