Skip to main content
Advanced Search

Filters: Tags: Yellowstone National Park (X) > Extensions: Citation (X)

2 results (52ms)   

View Results as: JSON ATOM CSV
Abstract (from http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0111669): Projected climate change at a regional level is expected to shift vegetation habitat distributions over the next century. For the sub-alpine species whitebark pine (Pinus albicaulis), warming temperatures may indirectly result in loss of suitable bioclimatic habitat, reducing its distribution within its historic range. This research focuses on understanding the patterns of spatiotemporal variability for future projected P.albicaulis suitable habitat in the Greater Yellowstone Area (GYA) through a bioclimatic envelope approach. Since intermodel variability from General Circulation Models (GCMs) lead to differing predictions...
Although the variation in natural 15N abundance in plants and soils is well characterized, mechanisms controlling N isotopic composition of organic matter are still poorly understood. The primary goal of this study was to examine the role of NH3 volatilization from ungulate urine patches in determining 15N abundance in grassland plants and soil in Yellowstone National Park. We additionally used isotopic measurements to explore the pathways that plants in urine patches take up N. Plant, soil, and volatilized NH3d15N were measured on grassland plots for 10 days following the addition of simulated urine. Simulated urine increased 15N of roots and soil and reduced 15N of shoots. Soil enrichment was due to the volatilization...