Skip to main content
Advanced Search

Filters: Tags: adaptive capacity (X)

16 results (28ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
An estimated value for the ability of managers to dirct actions to protect, restore, or mitigate species and habitats. We recognize that our preliminary estimates are arbitrary and fairly approximate, but argue that making these explicit within a framework will enable stakeholders and managers to conduct subsequent analyses to better support their decision making.
thumbnail
UPDATE 9/24/2014. Resilience concerns the ability of a living system to adjust to climate change, to moderate potential damages, to take advantage of opportunities, or to cope with consequences; in short, its capacity to adapt. In this project we aim to identify the most resilient examples of key geophysical settings (e.g. sand plains, granite mountains, limestone valleys, etc.) to provide conservationists with a nuanced picture of the places where conservation is most likely to succeed over centuries. The project had three parts: 1) identifying and mapping the geophysical settings, 2) developing a quantitative estimate of resilience for each setting based on landscape complexity and permeability, and 3) identifying...
thumbnail
Climate change threatens plants and animals across the US, making it important to have tools that can efficiently assess species’ vulnerabilities. In this project, CASC scientists and NatureServe are collaborating to update a popular Climate Change Vulnerability Index to include the latest scientific data, improved metrics, and new user-friendly technology. The tool will help state biologists and scientists prioritize conservation efforts, and in time for preparing updates to State Wildlife Action Plans that are due by 2025. Climate change is impacting our nation’s plants and animals. To take preventative actions, public land managers need to know which species are most threatened, and how. In other words, biologists...
thumbnail
Natural resource managers are confronted with the pressing challenge to develop conservation plans that address complex ecological and societal needs against the backdrop of a rapidly changing climate. Climate change vulnerability assessments (CCVAs) provide valuable information that helps guide management and conservation actions in this regard. An essential component to CCVAs is understanding adaptive capacity, or the ability of a species to cope with or adjust to climate change. However, adaptive capacity is the least understood and evaluated component of CCVAs. This is largely due to a fundamental need for guidance on how to assess adaptive capacity and incorporate this information into conservation planning...
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It is an exposure variable that represents the climate velocity for Rehfeldt biome-habitat types (from 2000 to 2060), where units are in km/year.
thumbnail
An estimated value for the ability of managers to dirct actions to protect, restore, or mitigate species and habitats. We recognize that our preliminary estimates are arbitrary and fairly approximate, but argue that making these explicit within a framework will enable stakeholders and managers to conduct subsequent analyses to better support their decision making.
thumbnail
Fire in the western U.S. poses one of the greatest threats to human and ecological communities alike. In fact, fire management is the largest single expenditure of land management funds on federal lands. Now, climate change is altering wildfire patterns. Climate change in the West is creating warmer and drier conditions, resulting in an increase in the amount of dead vegetation available to fuel fires. This project sought to assess the vulnerability of forests in the southwestern U.S. to climate change and wildfire, in order to understand how these ecosystems might become altered as a result. Researchers (a) examined how climate change impacts wildfires in the region, to better understand fire risk; (b) identified...
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It represents terrestrially-defined adaptive capacity, where values run from 0 to 1.0 and is calculated as the complement of the degree of human modification (1-H). The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It represents hydrologically-defined adaptive capacity, where values run from 0 to 1.0 and is calculated as the complement of the degree of human modification (1-H), and are then averaged using hierarchical watersheds. The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
Data contain metabolic rates of red-backed salamanders (Plethodon cinereus) exposed to different thermal regimes, and the movements of salamanders marked with PIT tags and exposed to electromagnetic fields.
Salmonids, a group of coldwater-adapted fishes of enormous ecological and socio-economic value, historically inhabited a variety of freshwater habitats throughout the Pacific Northwest (PNW). Over the past century, however, populations have dramatically declined due to habitat loss, overharvest, and invasive species. Consequently, many populations are listed as threatened or endangered under the U.S. Endangered Species Act. Complicating these stressors is global warming and associated climate change. Overall, aquatic ecosystems across the PNW are predicted to experience increasingly earlier snowmelt in the spring, reduced late spring and summer flows, increased winter flooding, warmer and drier summers, increased...
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It represents a combined measure of physiographic diversity (EH) and terrestrially-defined adaptive capacity (Ag). Values run from 0 to 1.0 and is calculated as: Agp = EH x Ag. The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
This dataset is one of a dozen or so datasets that provide the basis for a vulnerability assessment of the Great Northern LCC that examines land use and climate changes at landscape scales, for the full LCC boundary. It represents terrestrially-defined adaptive capacity, where values run from 0 to 1.0 and is calculated as the complement of the degree of human modification (1-H). The original floating point values ranging from 0-1.0 were multiplied by 100 and converted to integer format for this dataset.
thumbnail
Resilience concerns the ability of a living system to adjust to climate change, to moderate potential damages, to take advantage of opportunities, or to cope with consequences; in short, its capacity to adapt. In this project we aim to identify the most resilient examples of key geophysical settings (e.g. sand plains, granite mountains, limestone valleys, etc.) to provide conservationists with a nuanced picture of the places where conservation is most likely to succeed over centuries. The project had three parts: 1) identifying and mapping the geophysical settings, 2) developing a quantitative estimate of resilience for each setting based on landscape complexity and permeability, and 3) identifying key linkages...
thumbnail
This dataset represents The Nature Conservancy's Terrestrial Resilience symbolized by Geophysical Settings (90m Resilience is also included in the download of this dataset). Resilience concerns the ability of a living system to adjust to climate change, to moderate potential damages, to take advantage of opportunities, or to cope with consequences; in short, its capacity to adapt. In this project we aim to identify the most resilient examples of key geophysical settings (e.g. sand plains, granite mountains, limestone valleys, etc.) to provide conservationists with a nuanced picture of the places where conservation is most likely to succeed over centuries. The project had three parts: 1) identifying and mapping...
This research project sought to understand the ways in which aspects of Native American culture have been affected by climate change in the Northwest region of the U.S. There are aspects of tribal culture, such as songs, stories, prayers, and dances that include Mish, wildlife, or plants as central images or main symbolic Migures, and therefore may be affected by environmentally driven changes. The intimate connections that tribes have maintained with the natural environment are more spiritually rich and complex than non-Native consumptive views of natural resources. After careful consideration of tribe size, level of cultural activity, strength of ties to the environment, and connection to culturally significant...


    map background search result map search result map The Vulnerability of Forests to Climate Change and Wildfire in the Southwestern U.S. Geophysical Settings 1000 A Hexagons, Northern Appalachians/Acadians Resilience Stratified by Setting and Ecoregion with Regional Override, Northern Appalachians/Acadians Adaptive Capacity, High Range Adaptive Capacity, Low Range Local Connectedness 1000 A Hexagons Stratified by Geophysical Setting and Ecoregion, Northern Appalachians Ag: terrestrially defined adaptive capacity for Great Northern LCC Agp: combined measure of physiographic diversity (EH) and terrestrially-defined adaptive capacity (Ag) for Great Northern LCC Aw: hydrologically-defined adaptive capacity for Great Northern LCC Awp: combined measure of physiographic diversity (EH) and hydrologically-defined adaptive capacity (Aw) for Great Northern LCC Ehv: climate velocity for Rehfeldt biome-habitat types (km/year). Report to NECSC: Adaptive capacity in a forest indicator species Evaluating Species’ Adaptive Capacity in a Changing Climate: Applications to Natural-Resource Management in the Northwestern U.S. Developing a next-generation Climate Change Vulnerability Index in support of climate-informed natural-resource management Evaluating Species’ Adaptive Capacity in a Changing Climate: Applications to Natural-Resource Management in the Northwestern U.S. Report to NECSC: Adaptive capacity in a forest indicator species The Vulnerability of Forests to Climate Change and Wildfire in the Southwestern U.S. Adaptive Capacity, High Range Adaptive Capacity, Low Range Geophysical Settings 1000 A Hexagons, Northern Appalachians/Acadians Local Connectedness 1000 A Hexagons Stratified by Geophysical Setting and Ecoregion, Northern Appalachians Resilience Stratified by Setting and Ecoregion with Regional Override, Northern Appalachians/Acadians Ag: terrestrially defined adaptive capacity for Great Northern LCC Agp: combined measure of physiographic diversity (EH) and terrestrially-defined adaptive capacity (Ag) for Great Northern LCC Aw: hydrologically-defined adaptive capacity for Great Northern LCC Awp: combined measure of physiographic diversity (EH) and hydrologically-defined adaptive capacity (Aw) for Great Northern LCC Ehv: climate velocity for Rehfeldt biome-habitat types (km/year). Developing a next-generation Climate Change Vulnerability Index in support of climate-informed natural-resource management