Skip to main content
Advanced Search

Filters: Tags: barotropic_sea_water_y_velocity (X)

20 results (39ms)   

View Results as: JSON ATOM CSV
Simulation of hydrodynamic circulation in Barnegat Bay for the period from 03-01-2012 to 10-01-2012. The bathymetry of the model was based on the National Ocean Service Hydrographic Survey data, and updated with recent bathymetric measurements. At the landward end (western boundary), we specified point sources of freshwater in accordance with USGS streamflow measurements at 7 gauges, and a radiation boundary condition that allows tidal energy to propagate landward. On the seaward end, tidal water level and velocity amplitudes from the ADCIRC tidal database for the North Atlantic were applied. These were supplemented by the subtidal water level and subtidal barotropic velocity from the ESPreSSO model, which covers...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, Earth Science > Oceans > Salinity/Density > Salinity, Earth Science > Oceans > Sea Surface Topography > Sea Surface Height, All tags...
The idealized test domain is utilized to study vertical tracer mixing without the presence of advection terms. The tracer starts to mix under the application of a surface stress. The model results are intended to be accessed from the THREDDS data server available through the related external resources. The model NetCDF files are stored on this trusted digital repository to ensure backup and longevity of these data.
The numerical model is built using an high resolution (1m) idealized domain to test the implementation of lateral retreat formulations in the COAWST modeling framework. The lateral retreat is calculated within the model and is based on lateral wave thrust.
Transport of material in an estuary is important for water quality and hazards concern. We studied these processes in the Hudson River Estuary, located along the northeast coast of the U.S. using the COAWST numerical modeling system. A skill assessment of the COAWST model for the 3-D salinity structure of the estuary has been successfully studied in the past, and the present research extended that understanding to look at both physical and numerical mixing. The model grid extends from the south at the Battery, NY to the north in Troy, NY. The simulation is performed from March 25 to July 11, 2005 (111 days). For more information see: https://doi.org/10.5066/P95E8LAS.
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2010) model to simulate ocean circulation, waves, and sediment transport in Barnegat Bay, New Jersey, during Hurricane Sandy. The simulation period was from October 27 to November 4, 2012. Initial conditions for the salinity and temperature fields in the domain were acquired from a 7-month simulation of the same domain (Defne and Ganju, 2018). We used a 2012 digital terrain model (Andrews and others, 2015) to prescribe the prestorm bathymetry. Wetting and drying was enabled, wave-current interaction was modeled with a boundary-layer formulation accounting for the apparent roughness of waves, and the vortex force formulation...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments > Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
The development of Submerged Aquatic Vegetation (SAV) growth model within the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model leads to a change in SAV biomass. The SAV biomass is computed from temperature, nutrient loading and light predictions obtained from coupled hydrodynamics (temperature), bio-geochemistry (nutrients) and bio-optical (light) models. In exchange, the growth of SAV sequesters or contributes nutrients from the water column and sediment layers. The presence of SAV modulates current and wave attenuation and consequently affects modelled sediment transport. The model of West Falmouth Harbor in Massachusetts, USA was simulated to study the seagrass growth/dieback pattern in a hypothetical...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
The idealized test domain involves the simulation of an idealized stratified esutary with a rectangular geometry along with tidal forcings and river input to analyze a time-dependent solution of tracer mixing. The model results are intended to be accessed from the THREDDS data server available through the related external resources. The model NetCDF files are stored on this trusted digital repository to ensure backup and longevity of these data.
The horizontal propagation of a 1-D tracer patch allows to verify the implementation of numerical mixing terms in the model anlong with comparing the effect of using different tracer advection schemes in the presence of a sharp front. The model results are intended to be accessed from the THREDDS data server available through the related external resources. The model NetCDF files are stored on this trusted digital repository to ensure backup and longevity of these data.
thumbnail
We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2010) model to simulate ocean circulation, waves, and sediment transport in Barnegat Bay, New Jersey, during Hurricane Sandy. The simulation period was from October 27 to November 4, 2012. Initial conditions for the salinity and temperature fields in the domain were acquired from a 7-month simulation of the same domain (Defne and Ganju, 2018). We used a 2012 digital terrain model (Andrews and others, 2015) to prescribe the prestorm bathymetry. Wetting and drying was enabled, wave-current interaction was modeled with a boundary-layer formulation accounting for the apparent roughness of waves, and the vortex force formulation...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
An idealized domain is setup to test the development of Submerged Aquatic Vegetation (SAV) growth model within the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model. The change in SAV biomass is computed from temperature, nutrient loading and light predictions obtained from coupled hydrodynamics (temperature), bio-geochemistry (nutrients) and bio-optical (light) models. In exchange, the growth of SAV sequesters or contributes nutrients from the water column and sediment layers. The presence of SAV modulates current and wave attenuation and consequently affects modelled sediment transport. The idealized domain simulation shows that the newly developed framework can simulate a two-way coupled SAV-biogeochemistry-hydrodynamic...
thumbnail
We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2010) model to simulate ocean circulation, waves, and sediment transport in Barnegat Bay, New Jersey, during Hurricane Sandy. The simulation period was from October 27 to November 4, 2012. Initial conditions for the salinity and temperature fields in the domain were acquired from a 7-month simulation of the same domain (Defne and Ganju, 2018). We used a 2012 digital terrain model (Andrews and others, 2015) to prescribe the prestorm bathymetry. Wetting and drying was enabled, wave-current interaction was modeled with a boundary-layer formulation accounting for the apparent roughness of waves, and the vortex force formulation...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments > Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
The classic lock exchange problem is reproduced where in a sharp difference in fluid density leads to shear flow driven by the internal pressure gradient. The formation of sharp fronts is utilized to study the mixing properties of three different tracer advection schemes. The model results are intended to be accessed from the THREDDS data server available through the related external resources. The model NetCDF files are stored on this trusted digital repository to ensure backup and longevity of these data.
thumbnail
The development of Submerged Aquatic Vegetation (SAV) growth model within the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model leads to a change in SAV biomass. The SAV biomass is computed from temperature, nutrient loading and light predictions obtained from coupled hydrodynamics (temperature), bio-geochemistry (nutrients) and bio-optical (light) models. In exchange, the growth of SAV sequesters or contributes nutrients from the water column and sediment layers. The presence of SAV modulates current and wave attenuation and consequently affects modelled sediment transport. The SAV growth model is employed to simulate the model of West Falmouth Harbor in Massachusetts, USA to test the ability of the...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
Simulation of hydrodynamic circulation in Barnegat Bay for the period from 03-01-2012 to 10-01-2012. The bathymetry of the model was based on the National Ocean Service Hydrographic Survey data, and updated with recent bathymetric measurements. At the landward end (western boundary), we specified point sources of freshwater in accordance with USGS streamflow measurements at 7 gauges, and a radiation boundary condition that allows tidal energy to propagate landward. On the seaward end, tidal water level and velocity amplitudes from the ADCIRC tidal database for the North Atlantic were applied. These were supplemented by the subtidal water level and subtidal barotropic velocity from the ESPreSSO model, which covers...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: CMG_Portal, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, Earth Science > Oceans > Salinity/Density > Salinity, Earth Science > Oceans > Sea Surface Topography > Sea Surface Height, All tags...
thumbnail
We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2010) model to simulate ocean circulation, waves, and sediment transport in Barnegat Bay, New Jersey, during Hurricane Sandy. The simulation period was from October 27 to November 4, 2012. Initial conditions for the salinity and temperature fields in the domain were acquired from a 7-month simulation of the same domain (Defne and Ganju, 2018). We used a 2012 digital terrain model (Andrews and others, 2015) to prescribe the prestorm bathymetry. Wetting and drying was enabled, wave-current interaction was modeled with a boundary-layer formulation accounting for the apparent roughness of waves, and the vortex force formulation...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling framework was extended to add two key processes that affect marshes, erosion due to lateral wave thrust (LWT) and vertical accretion due to biomass productivity. The testing of the combined effects of integrating these two processes was done by modeling marsh complexes within Forsythe National Wildlife Refuge and the Barnegat Bay (BB) estuary, New Jersey, USA. The simulations were performed first for the month of May 2015 for the entire Barnegat Bay. The Barnegat Bay estuary solution was used to force the two smaller domains that encompass Reedy and Dinner Creeks and are modeled for the same time period.
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling framework was extended to add two key processes that affect marshes, erosion due to lateral wave thrust (LWT) and vertical accretion due to biomass productivity. The testing of the combined effects of integrating these two processes was done by modeling marsh complexes within Forsythe National Wildlife Refuge and the Barnegat Bay (BB) estuary, New Jersey, USA. The simulations were performed first for the month of May 2015 for the entire Barnegat Bay. The Barnegat Bay estuary solution was used to force the two smaller domains that encompass Reedy and Dinner Creeks and are modeled for the same time period.
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
The numerical model is built using an idealized domain to verify the implementation of lateral wave thrust routines in the COAWST modeling framework. The simulations are performed for 3 different wave heights to verify the model behavior.
thumbnail
We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2010) model to simulate ocean circulation, waves, and sediment transport in Barnegat Bay, New Jersey, during Hurricane Sandy. The simulation period was from October 27 to November 4, 2012. Initial conditions for the salinity and temperature fields in the domain were acquired from a 7-month simulation of the same domain (Defne and Ganju, 2018). We used a 2012 digital terrain model (Andrews and others, 2015) to prescribe the prestorm bathymetry. Wetting and drying was enabled, wave-current interaction was modeled with a boundary-layer formulation accounting for the apparent roughness of waves, and the vortex force formulation...
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...
thumbnail
The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling framework was extended to add two key processes that affect marshes, erosion due to lateral wave thrust (LWT) and vertical accretion due to biomass productivity. The testing of the combined effects of integrating these two processes was done by modeling marsh complexes within Forsythe National Wildlife Refuge and the Barnegat Bay (BB) estuary, New Jersey, USA. The simulations were performed first for the month of May 2015 for the entire Barnegat Bay. The Barnegat Bay estuary solution was used to force the two smaller domains that encompass Reedy and Dinner Creeks and are modeled for the same time period.
Categories: Data; Types: Map Service, NetCDF OPeNDAP Service, OGC WMS Layer; Tags: CMG_Portal, Earth Science > Human Dimensions > Natural Hazards > Floods, Earth Science > Oceans > Marine Sediments >Sediment Transport, Earth Science > Oceans > Ocean Circulation > Ocean Currents, Earth Science > Oceans > Ocean Temperature > Potential Temperature, All tags...


    map background search result map search result map SBDR Development Testing USGS Barnegat Bay hydrodynamic model for March-September 2012 Numerical model of salinity transport and mixing in the Hudson River Estuary USGS Barnegat Bay hydrodynamic model for Hurricane Sandy (Storm) USGS Barnegat Bay storm filtered hydrodynamic model for Hurricane Sandy (nonStorm) USGS Barnegat Bay hydrodynamic model for Hurricane Sandy without swell (noSwell) USGS Barnegat Bay hydrodynamic model for Hurricane Sandy without swell and waves (noSW) USGS Barnegat Bay hydrodynamic model for Hurricane Sandy without swell, waves and wind (noSWW) Numerical model of Submerged Aquatic Vegetation (SAV) growth dynamics in West Falmouth Harbor with nitrate loading Numerical model of Submerged Aquatic Vegetation (SAV) growth dynamics in West Falmouth Harbor without nitrate loading COAWST model of Barnegat Bay creeks to demonstrate marsh dynamics USGS-CMG-COAWST Model: Reedy Creek Simulations May 2015 USGS-CMG-COAWST Model: Dinner Creek Simulations May 2015 Numerical model of Submerged Aquatic Vegetation (SAV) growth dynamics in West Falmouth Harbor with nitrate loading Numerical model of Submerged Aquatic Vegetation (SAV) growth dynamics in West Falmouth Harbor without nitrate loading USGS-CMG-COAWST Model: Reedy Creek Simulations May 2015 USGS-CMG-COAWST Model: Dinner Creek Simulations May 2015 SBDR Development Testing USGS Barnegat Bay hydrodynamic model for March-September 2012 USGS Barnegat Bay hydrodynamic model for Hurricane Sandy without swell (noSwell) USGS Barnegat Bay hydrodynamic model for Hurricane Sandy (Storm) USGS Barnegat Bay storm filtered hydrodynamic model for Hurricane Sandy (nonStorm) USGS Barnegat Bay hydrodynamic model for Hurricane Sandy without swell and waves (noSW) USGS Barnegat Bay hydrodynamic model for Hurricane Sandy without swell, waves and wind (noSWW) COAWST model of Barnegat Bay creeks to demonstrate marsh dynamics Numerical model of salinity transport and mixing in the Hudson River Estuary