Skip to main content
Advanced Search

Filters: Tags: bioaccumulation (X) > Extensions: Citation (X)

16 results (10ms)   

View Results as: JSON ATOM CSV
Article Citation: T. R. Maret, D. J. Cain, D. E. MacCoy, and T. M. Short (2003) Response of benthic invertebrate assemblages to metal exposure and bioaccumulation associated with hard-rock mining in northwestern streams, USA. Journal of the North American Benthological Society: December 2003, Vol. 22, No. 4, pp. 598-620.
Agricultural residues are abundantly available in energy deficient developing countries. Many of the agricultural residues are considered as waste, and their energy potential has not been realized in energy recovery schemes. Coutilization of agricultural residues in existing coal fired power plants can help in producing clean energy, disposing of waste, and increasing the income of the rural population. Sheameal, cotton stalk, sugar cane bagasse, and wood chips were cofired with coal in 5, 10, and 15% thermal fractions in a 20 kW down-fired combustor. The combustion behavior of the blends of biomass-coal was examined. It was found that agricultural residues can be used as a potential substitute fuel and can help...
Cobalt is a naturally occurring element found in rocks, soil, water, plants, and animals and has diverse industrial importance. It is cycled in surface environments through many natural processes (e.g. volcanic eruptions, weathering) and can be introduced through numerous anthropogenic activities (e.g. burning of coal or oil, or the production of cobalt alloys). The environmental behaviour of cobalt in terrestrial environment is relatively poorly studied and in particular where Co is used in industrial processes, the baseline information to support wider and long-term environmental impacts is widely dispersed. To support the adoption of new EU regulations on the risk assessment of chemicals, we review here the various...
Waterborne and sediment selenium (Se) data, in conjunction with selected physicochemical parameters, were collected from streams of the middle Arkansas River basin, Colorado, USA, to examine the factors affecting sediment Se accumulation in a lotic environment. An empirical model of dissolved-to-sediment Se transfer in western streams, as an interactive function of sediment organic carbon content (R2 = 0.78, p < 0.001, n = 34), was developed and validated. Sediment Se and associated biological effects data were compiled from the literature, to provide an estimate of sediment Se concentration thresholds that have biological effects. Based on this preliminary analysis, sediment Se concentrations of 2.5 ?g/g would...
In the regulatory context, bioaccumulation assessment is often hampered by substantial data uncertainty as well as by the poorly understood differences often observed between results from laboratory and field bioaccumulation studies. Bioaccumulation is a complex, multifaceted process, which calls for accurate error analysis. Yet, attempts to quantify and compare propagation of error in bioaccumulation metrics across species and chemicals are rare. Here, we quantitatively assessed the combined influence of physicochemical, physiological, ecological, and environmental parameters known to affect bioaccumulation for 4 species and 2 chemicals, to assess whether uncertainty in these factors can explain the observed differences...
Agricultural residues are abundantly available in energy deficient developing countries. Many of the agricultural residues are considered as waste, and their energy potential has not been realized in energy recovery schemes. Coutilization of agricultural residues in existing coal fired power plants can help in producing clean energy, disposing of waste, and increasing the income of the rural population. Sheameal, cotton stalk, sugar cane bagasse, and wood chips were cofired with coal in 5, 10, and 15% thermal fractions in a 20 kW down-fired combustor. The combustion behavior of the blends of biomass-coal was examined. It was found that agricultural residues can be used as a potential substitute fuel and can help...
We used a phylogenetically based comparative approach to evaluate the potential for physiological studies to reveal patterns of diversity in traits related to susceptibility to an environmental stressor, the trace metal cadmium (Cd). Physiological traits related to Cd bioaccumulation, compartmentalization, and ultimately susceptibility were measured in 21 aquatic insect species representing the orders Ephemeroptera, Plecoptera, and Trichoptera. We mapped these experimentally derived physiological traits onto a phylogeny and quantified the tendency for related species to be similar (phylogenetic signal). All traits related to Cd bioaccumulation and susceptibility exhibited statistically significant phylogenetic signal,...
A mathematically linked mercury transport, speciation, kinetic, and simple biotic uptake (BIOTRANSPEC) model has been developed. An extension of the metal transport and speciation (TRANSPEC) model, BIOTRANSPEC estimates the fate and biotic uptake of inorganic (Hg(II)), elemental (Hg(0)) and organic (MeHg) forms of mercury and their species in the dissolved, colloidal (e.g., dissolved organic matter [DOM]), and particulate phases of surface aquatic systems. A pseudo-steady state version of the model was used to describe mercury dynamics in Lahontan Reservoir (near Carson City, NV, USA), where internal loading of the historically deposited mercury is remobilized, thereby maintaining elevated water concentrations....
Ecological impacts of water-quality problems have developed in the western United States resulting from the disposal of seleniferous agricultural wastewater in wetland areas. Overt effects of selenium toxicosis occurred at five areas where deformities of wild aquatic birds were similar to those first observed at Kesterson National Wildlife Refuge in the west-central San Joaquin Valley of California. These areas are: Tulare Lake Bed Area, California, Middle Green River Basin, Utah, Kendrick Reclamation Project Area, Wyoming, Sun River Basin, Montana, and Stillwater Wildlife Management Area, Nevada. Potential for ecological damage is indicated at six more sites in Oregon, Colorado, the Colorado/Kansas border, and...
The main route of exposure for selenium (Se) is dietary, yet regulations lack biologically based protocols for evaluations of risk. We propose here an ecosystem-scale model that conceptualizes and quantifies the variables that determine how Se is processed from water through diet to predators. This approach uses biogeochemical and physiological factors from laboratory and field studies and considers loading, speciation, transformation to particulate material, bioavailability, bioaccumulation in invertebrates, and trophic transfer to predators. Validation of the model is through data sets from 29 historic and recent field case studies of Se-exposed sites. The model links Se concentrations across media (water, particulate,...
Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impacted streams, aquatic organisms such as fish are continuously exposed to biologically-active chemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which > 80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also...
Although the differential responses of stream taxa to metal exposure have been exploited for bioassessment and monitoring, the mechanisms affecting these responses are not well understood. In this study, the subcellular partitioning of metals in operationally defined metal-sensitive and detoxified fractions were analyzed in five insect taxa. Samples were collected in two separate years along an extensive metal contamination gradient in the Clark Fork River (MT, USA) to determine if interspecific differences in the metal concentrations of metal-sensitive fractions and detoxified fractions were linked to the differences in distributions of taxa relative to the gradient. Most of the Cd, Cu, and Zn body burdens were...
Consumption of periphyton is a potentially important route of metal exposure to benthic invertebrate grazers. The present study examined the bioaccumulation kinetics of dissolved and dietary Cd and Cu in five species of mayflies (class Insecta). Artificial stream water and benthic diatoms were separately labeled with enriched stable metal isotopes to determine physiological rate constants used by a biokinetic bioaccumulation model. The model was employed to simulate the effects of metal partitioning between water and food, expressed as the bioconcentration factor (BCF), as well as ingestion rate (IR) and metal assimilation efficiency of food (AE), on the relative importance of water and food to metal bioaccumulation....
The main route of exposure for selenium (Se) is dietary, yet regulations lack biologically based protocols for evaluations of risk. We propose here an ecosystem-scale model that conceptualizes and quantifies the variables that determine how Se is processed from water through diet to predators. This approach uses biogeochemical and physiological factors from laboratory and field studies and considers loading, speciation, transformation to particulate material, bioavailability, bioaccumulation in invertebrates, and trophic transfer to predators. Validation of the model is through data sets from 29 historic and recent field case studies of Se-exposed sites. The model links Se concentrations across media (water, particulate,...
A mathematically linked mercury transport, speciation, kinetic, and simple biotic uptake (BIOTRANSPEC) model has been developed. An extension of the metal transport and speciation (TRANSPEC) model, BIOTRANSPEC estimates the fate and biotic uptake of inorganic (Hg(II)), elemental (Hg(0)) and organic (MeHg) forms of mercury and their species in the dissolved, colloidal (e.g., dissolved organic matter [DOM]), and particulate phases of surface aquatic systems. A pseudo-steady state version of the model was used to describe mercury dynamics in Lahontan Reservoir (near Carson City, NV, USA), where internal loading of the historically deposited mercury is remobilized, thereby maintaining elevated water concentrations....
Cobalt is a naturally occurring element found in rocks, soil, water, plants, and animals and has diverse industrial importance. It is cycled in surface environments through many natural processes (e.g. volcanic eruptions, weathering) and can be introduced through numerous anthropogenic activities (e.g. burning of coal or oil, or the production of cobalt alloys). The environmental behaviour of cobalt in terrestrial environment is relatively poorly studied and in particular where Co is used in industrial processes, the baseline information to support wider and long-term environmental impacts is widely dispersed. To support the adoption of new EU regulations on the risk assessment of chemicals, we review here the various...