Skip to main content
Advanced Search

Filters: Tags: biogeochemical modeling (X)

3 results (7ms)   

View Results as: JSON ATOM CSV
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/2014GL060199/abstract): While recent work demonstrates that glacial meltwater provides a substantial and relatively labile flux of the micronutrient iron to oceans, the role of high-latitude estuary environments as a potential sink of glacial iron is unknown. Here we present the first quantitative description of iron removal in a meltwater-dominated estuary. We find that 85% of “dissolved” Fe is removed in the low-salinity region of the estuary along with 41% of “total dissolvable” iron associated with glacial flour. We couple these findings with hydrologic and geochemical data from Gulf of Alaska (GoA) glacierized catchments to calculate meltwater-derived...
Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration...
Upscaling the spatial and temporal changes in carbon (C) stocks and fluxes from sites to regions is a critical and challenging step toward improving our understanding of the dynamics of C sources and sinks over large areas. This study simulated soil organic C (SOC) dynamics within 0–100 cm depth of soils across the state of Iowa in the USA from 1972 to 2007 using the General Ensemble biogeochemical Modeling System (GEMS). The model outputs with variation coefficient were analyzed and assembled from simulation unit to the state scale based upon major land use types at annual step. Results from this study indicate that soils (within a depth of 0–100 cm) in Iowa had been a SOC source at a rate of 190 ± 380 kg C ha−1...