Skip to main content
Advanced Search

Filters: Tags: burn probability (X)

44 results (94ms)   

View Results as: JSON ATOM CSV
thumbnail
Burn probability (BP) raster dataset predicted for the 2080-2100 period in the Rio Grande area was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5 Representative Concentration Pathway.
thumbnail
Burn probability (BP) for Fireline Intensity Class 6 (FIL6) with flame lengths in the range of 3.7-15 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...
thumbnail
Burn probability (BP) for Fireline Intensity Class 2 (FIL2) with flame lengths in the range of 0.6-1.2 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 5 (FIL5) with flame lengths in the range of 2.4-3.7 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 4 (FIL4) with flame lengths in the range of 1.8-2.4 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
The FSim burn probability was used to determine the burn probability of the white sturgeon range in the ecoregion. This layer was used to examine wildfire risk to areas within the white sturgeon range.
thumbnail
Burn probability (BP) raster dataset predicted for the 2020-2040 period in the Rio Grande area was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5 Representative Concentration Pathway.
thumbnail
Burn probability (BP) for Fireline Intensity Class 1 (FIL1) with flame lengths in the range of 0-0.6 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...
thumbnail
This map shows the results of a similar analysis of equalizing into low, moderate and high burn probabilities but using the NGB ecoregion rather than the sage-grouse range. These data are provided by Bureau of Land Management (BLM) "as is" and may contain errors or omissions. The User assumes the entire risk associated with its use of these data and bears all responsibility in determining whether these data are fit for the User's intended use. These data may not have the accuracy, resolution, completeness, timeliness, or other characteristics appropriate for applications that potential users of the data may contemplate. The User is encouraged to carefully consider the content of the metadata file associated with...
thumbnail
Fsim (Fire Simulation) nationwide map showing the reader how the NGB ecoregion compares to the rest of the lower 48 states with regards to burn probability. These data are provided by Bureau of Land Management (BLM) "as is" and may contain errors or omissions. The User assumes the entire risk associated with its use of these data and bears all responsibility in determining whether these data are fit for the User's intended use. These data may not have the accuracy, resolution, completeness, timeliness, or other characteristics appropriate for applications that potential users of the data may contemplate. The User is encouraged to carefully consider the content of the metadata file associated with these data. The...
thumbnail
Burn probability (BP) for Fireline Intensity Class 4 (FIL4) with flame lengths in the range of 1.8-2.4 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 3 (FIL3) with flame lengths in the range of 1.2-1.8 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 1 (FIL1) with flame lengths in the range of 0-0.6 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...
thumbnail
The FSim burn probability was used to determine the burn probability of the white sturgeon range in the ecoregion. This layer was used to examine wildfire risk to areas within the white sturgeon range.
thumbnail
The FSim burn probability was used to determine the burn probability of the Columbia spotted frog modeled habitat within the ecoregion. This layer was used to examine wildfire risk to the Columbia spotted frog in the ecoregion.
thumbnail
The wildland fire potential (WFP) map is a raster geospatial product produced by the USDA Forest Service, Fire Modeling Institute that is intended to be used in analyses of wildfire risk or hazardous fuels prioritization at large landscapes (100s of square miles) up through regional or national scales. The WFP map builds upon, and integrates, estimates of burn probability (BP) and conditional probabilities of fire intensity levels (FILs) generated for the national interagency Fire Program Analysis system (FPA) using a simulation modeling system called the Large Fire Simulator (FSim; Finney et al. 2011). The specific objective of the 2012 WFP map is to depict the relative potential for wildfire that would be difficult...
thumbnail
Burn probability (BP) for Fireline Intensity Class 6 (FIL6) with flame lengths in the range of 3.7-15 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...
thumbnail
Burn probability (BP) for Fireline Intensity Class 6 (FIL6) with flame lengths in the range of 3.7-15 m predicted for the 2020-2040 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...
thumbnail
Fsim Burn Probability in Wild Horse and Burro Herd Management Areas. These data are provided by Bureau of Land Management (BLM) "as is" and may contain errors or omissions. The User assumes the entire risk associated with its use of these data and bears all responsibility in determining whether these data are fit for the User's intended use. These data may not have the accuracy, resolution, completeness, timeliness, or other characteristics appropriate for applications that potential users of the data may contemplate. The User is encouraged to carefully consider the content of the metadata file associated with these data. The BLM should be cited as the data source in any products derived from these data.
thumbnail
Burn probability (BP) raster dataset predicted for the 2050-2070 period in the Rio Grande area was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5 Representative Concentration Pathway.


map background search result map search result map Burn Probability for Fireline Intensity Class 1, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 1, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 2, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 3, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 4, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 4, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 5, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2020 to 2040 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2080 to 2100 for Rio Grande study area Burn Probability predicted for 2020 to 2040 for Rio Grande study area Burn Probability predicted for 2050 to 2070 for Rio Grande study area Burn Probability predicted for 2080 to 2100 for Rio Grande study area BLM REA NGB 2011 Fsim Burn Probability in White Sturgeon Areas (HUC12) BLM REA NGB 2011 Fsim Burn Probability in White Sturgeon Areas (4km) BLM REA NGB 2011 Fsim Burn Probability in Columbia Spotted Frog Modeled Habitat BLM REA SLV 2013 Wildland fire potential BLM REA NGB 2011 Fsim Burn Probability within NGB (equalized) BLM REA NGB 2011 Wild Horse and Burro Herd Management Areas Burn Probability BLM REA NGB 2011 Nation-wide Perspective of Burn Probability BLM REA SLV 2013 Wildland fire potential Burn Probability for Fireline Intensity Class 1, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 1, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 2, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 3, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 4, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 4, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 5, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2020 to 2040 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2080 to 2100 for Rio Grande study area Burn Probability predicted for 2020 to 2040 for Rio Grande study area Burn Probability predicted for 2050 to 2070 for Rio Grande study area Burn Probability predicted for 2080 to 2100 for Rio Grande study area BLM REA NGB 2011 Fsim Burn Probability in White Sturgeon Areas (HUC12) BLM REA NGB 2011 Fsim Burn Probability in White Sturgeon Areas (4km) BLM REA NGB 2011 Fsim Burn Probability in Columbia Spotted Frog Modeled Habitat BLM REA NGB 2011 Fsim Burn Probability within NGB (equalized) BLM REA NGB 2011 Wild Horse and Burro Herd Management Areas Burn Probability BLM REA NGB 2011 Nation-wide Perspective of Burn Probability