Skip to main content
Advanced Search

Filters: Tags: canopy height model (X)

15 results (8ms)   

View Results as: JSON ATOM CSV
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
thumbnail
This data release includes a file geodatabase with land cover maps for a 313-kilometer segment along the mainstem Klamath River corridor downstream from Iron Gate Dam, CA. The maps were derived from high-resolution (15cm) imagery and topobathymetric elevation data, collected by NV5 Geospatial (formerly QSI, Inc) and published on Open Topography (https://doi.org/10.5069/G9DN436N). Acquisition dates spanned 06/01/2018 to 06/14/2018. The area of interest was discretized into three zones and land cover maps were generated using geoprocessing tools, implemented in ArcMap 10.8.1, and image classification tools, implemented in Ecognition 10.2. The maps include six land cover classes: 1) trees, 2) shrubs, 3) grass, 4) bare...
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.


    map background search result map search result map Forest Canopy Gaps Identified by Lidar for the Alton Reach of the Illinois River from the Confluence of the Mississippi River to Kampsville, IL Forest Canopy Gaps Identified by Lidar for Navigational Pool 8 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 9 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 13 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 21 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 24 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 26 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Alton Reach of the Illinois River Broken Forest Canopy Identified by Lidar for the Navigational Pool 8 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 9 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 13 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 21 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 24 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 26 of the Mississippi River Baseline High Resolution Land Cover Map for the Mainstem Klamath River Corridor Downstream of Iron Gate Dam, Klamath River, CA, 2018 Forest Canopy Gaps Identified by Lidar for Navigational Pool 21 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 21 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 8 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 8 of the Mississippi River Forest Canopy Gaps Identified by Lidar for the Alton Reach of the Illinois River from the Confluence of the Mississippi River to Kampsville, IL Broken Forest Canopy Identified by Lidar for the Alton Reach of the Illinois River Forest Canopy Gaps Identified by Lidar for Navigational Pool 24 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 24 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 9 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 9 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 26 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 26 of the Mississippi River Forest Canopy Gaps Identified by Lidar for Navigational Pool 13 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 13 of the Mississippi River Baseline High Resolution Land Cover Map for the Mainstem Klamath River Corridor Downstream of Iron Gate Dam, Klamath River, CA, 2018