Skip to main content
Advanced Search

Filters: Tags: channel evolution (X)

7 results (15ms)   

View Results as: JSON ATOM CSV
A substantial increase in fluvial sediment supply relative to transport capacity causes complex, large-magnitude changes in river and floodplain morphology downstream. Although sedimentary and geomorphic responses to sediment pulses are a fundamental part of landscape evolution, few opportunities exist to quantify those processes over field scales. We investigated the downstream effects of sediment released during the largest dam removal in history, on the Elwha River, Washington, USA, by measuring changes in riverbed elevation and topography, bed sediment grain size, and channel planform as two dams were removed in stages over two years. As 10.5 million t (7.1 million m3) of sediment was released from two former...
This study applies spatial analyses to examine the consequences of accelerated urban expansion on a hydrologic system over a period of 24 years. Three sets of historical aerial photos are used in a GIS analysis to document the geomorphic history of Las Vegas Wash, which drains the rapidly growing Las Vegas urban area in southern Nevada. New spatial techniques are introduced to make quantitative measurements of the erosion at three specific time intervals in the hydrologic evolution of the channel and floodplain. Unlike other erosion studies that use two different elevation surfaces to assess erosion, this study used a single elevation surface to remove systematic and nonsystemic elevation errors. The spatial analysis...
Although dam removal has been increasingly used as an option in dam management, and as a river restoration tool, few studies provide detailed quantitative assessment of the geomorphological response of rivers to dam removal. In this study, we document the response of the Pine River, Michigan, to the gradual removal of Stronach Dam. In 1996, prior to the initiation of removal, 31 permanent cross-sectional transects were established in the 10-km study area. These transects were surveyed annually during the course of the removal (1996–2003) and for the three years following removal (2004–2006). Dam removal resulted in progressive headcutting of sediments in the former impoundment, extending upstream 3.89 km of the...
The ability to predict the effects of dam removal in highly sediment-filled systems is increasingly important as the number of such dam removal cases continues to grow. The cost and potential impacts of dam removal are site-specific and can vary substantially depending on local conditions. Of specific concern in sediment-impacted removals is the volume and rate of reservoir deposit erosion. The complexity and potential accuracy of modeling methods used to forecast the effects of such dam removals vary substantially. Current methods range from predictions based on simple analysis of pre-dam channel geometry to sophisticated data-intensive, three-dimensional numerical models. In the work presented here, we utilize...
The U.S. Geological Survey, in collaboration with American Rivers and other partners, conducted a monitoring program beginning in 2010 to track river response to a series of dam removals on the Patapsco River intended to restore anadromous fish habitat in the watershed. Dam removals included the November 2010 removal of the Simkins dam, a 3.3 m tall and 66 m wide dam, with a reservoir sediment volume of ~67,000 cubic meters. As part of the dam removal monitoring program, three USGS streamgaging stations were established in late 2010 along the mainstem of the Patapsco River to estimate flow and suspended sediment-transport for constraining sediment budgets. USGS 01589000 Patapsco River at Hollofield, MD was reestablished...
A slow draining reservoir on the U.S. East Coast was monitored to identify the processes governing channel evolution upstream of a dam removal. Channel evolution was documented through cross section surveys, sediment size analysis, discharge measurements, and visual assessments of vegetative growth. The reservoir drained slowly, allowing for an analysis of channel evolution and identification of the morphometric parameters defining the path and time required for a channel to reach dynamic equilibrium. Channel evolution was a multidirectional process, and evolving channel reaches actively migrated laterally while alternating between aggradation and degradation. Channel formation was dominated primarily by the hydrologic...


    map background search result map search result map Data for Specific Gage Analyses on the Patapsco River, 2010-2017 Data for Specific Gage Analyses on the Patapsco River, 2010-2017