Skip to main content
Advanced Search

Filters: Tags: climate (X) > Categories: Data (X)

351 results (42ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data set presents attributes of floodplain ecosystem characteristics including floodplain soil denitrification, floodplain soil biogeochemistry, floodplain vegetation, floodplain sedimentation, floodplain and channel morphometry, stream discharge and water quality, floodplain climate, floodplain physiographic region, and catchment land cover. Attributes are associated with 18 floodplains of the Chesapeake Bay watershed. For many of these attributes, mean values are summaries of multiple measurements made within each floodplain site.
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
PRISM climate data for Wyoming. Data can be accessed through the Geospatial Data Gateway http://datagateway.nrcs.usda.gov/.
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Future climates are simulated by general circulation models (GCM) using climate change scenarios (IPCC 2014). To project climate change for the sagebrush biome, we used 11 GCMs and two climate change scenarios from the IPCC Fifth Assessment, representative concentration pathways (RCPs) 4.5 and 8.5 (Moss et al. 2010, Van Vuuren et al. 2011). RCP4.5 scenario represents a future where climate policies limit and achieve stabilization of greenhouse gas concentrations to 4.5 W m-2 by 2100. RCP8.5 scenario might be called a business-as-usual scenario, where high emissions of greenhouse gases continue in the absence of climate change policies. The two selected time frames allow comparison of near-term (2020-2050) and longer-term...
thumbnail
Concerns about the influence of climate change on biota have emerged over the past decade, and responses in species populations and distribution patterns have already been documented (Parmesan 1996, Thomas and Lennon 1999). Current climates and communities will not simply migrate, but rather will re-form in novel ways over time (Fox 2007; Hunter et al. 1988; Williams and Jackson 2007). Due to the uncertainty of future climatic patterns and species responses, enduring features of the landscape (geophysical settings) are appropriate targets of assessment, planning, and conservation (Anderson and Ferree 2010, Beier and Brost 2010, Brost and Beier 2012; Hunter et al. 1988). Only recently have enduring features been...
thumbnail
Our project focuses on understanding patterns and causes of recent population declines in the Haleakala silversword that are associated with decreasing precipitation, increasing temperature, and related climate changes in Hawaii’s high-elevation ecosystems. The Haleakala silversword is an ideal taxon with which to assess impacts from climate change. It forms the foundation of a diverse alpine community and likely reflects wider ecological changes; it is already exhibiting patterns of mortality consistent with an upslope shifting distribution; and its high visibility and symbolic status make it unmatched in educational potential. Building on extensive research infrastructure, we propose to collect the demographic...
What are current conditions for important park natural resources? What are the critical data and knowledge gaps? What are some of the factors that are influencing park resource conditions? Natural Resource Condition Assessments (NRCAs) evaluate and report on the above for a subset of important natural resources in national park units (hereafter, parks). Focal study resources and indicators are selected on a park-by-park basis, guided by use of structured resource assessment and reporting frameworks. Considerations include park resource setting and enabling legislation (what are this park's most important natural resources?) and presently available data and expertise (what can be evaluated at this time?). In addition...
thumbnail
Climate grids for the extent of the GNLCC study area saved as asciis with a 2km resolution. These grids are saved in in the Albers Equal Area Conic projection. Summer is defined as months 7-9, while winter is defined as months 1-3. All grids with the exception of cmi.asc, dd5.asc, & growingsl.asc were produced in the program ClimateWNA, which downscales PRISM climate grids using a digital elevation model. Mean annual precipitation (mm) - aprec.asc Annual Climate moisture index (cm/year) - cmi.asc Degree-days > 5°C - dd5.asc Growing season length - growingsl.asc Isothermality (°C) - isotherm.asc Mean annual temperature (°C) - mat.asc Maximum temperature warmest month (°C) - maxtw.asc Minimum temperature coldest...


map background search result map search result map Precipitation Monthly for February 1971 - 2000 for Wyoming at 1:250,000 Great northern landscape conservation cooperative climate grids Understanding how climate change is affecting Hawaii's high-elevation ecosystems: an assessment of the long-term viability of Haleakala silverswords and associated biological communities Natural Resource Condition Assessments Precipitation (Proportion July - Sep) - 2070-2100 - RCP8.5 - Mean Precipitation (Proportion July - Sep) - 2020-2050 - RCP8.5 - Min Temperature (Mean: Annual) - 2020-2050 - RCP4.5 - Max Temperature (Mean: Annual) - 2020-2050 - RCP8.5 - Min Precipitation (Proportion May - Oct) - 1980-2010 Precipitation (Proportion May - Oct) - 2070-2100 - RCP4.5 - Min Precipitation (Proportion May - Oct) - 2020-2050 - RCP4.5 - Min Precipitation (Mean: Apr - June) - 2070-2100 - RCP4.5 - Max Precipitation (Mean: Dec - Mar) - 2020-2050 - RCP4.5 - Min Precipitation (Mean: July - Sep) - 2070-2100 - RCP8.5 - Mean Precipitation (Mean: July - Sep) - 2020-2050 - RCP8.5 - Min Temperature (Mean: Apr - June) - 2020-2050 - RCP8.5 - Mean Temperature (Mean: Dec - Mar) - 2070-2100 - RCP8.5 - Min Temperature (Minimum: January) - 2070-2100 - RCP8.5 - Mean Summary and Initial Evaluation of Enduring Features Information for the Conterminous USA, with Evaluation of Potential Use for Ecoregion Assessment Data on denitrification and ecological characteristics of nontidal floodplains, Chesapeake Bay watershed, USA, 2013-2016 Understanding how climate change is affecting Hawaii's high-elevation ecosystems: an assessment of the long-term viability of Haleakala silverswords and associated biological communities Data on denitrification and ecological characteristics of nontidal floodplains, Chesapeake Bay watershed, USA, 2013-2016 Great northern landscape conservation cooperative climate grids Precipitation Monthly for February 1971 - 2000 for Wyoming at 1:250,000 Summary and Initial Evaluation of Enduring Features Information for the Conterminous USA, with Evaluation of Potential Use for Ecoregion Assessment Precipitation (Proportion July - Sep) - 2070-2100 - RCP8.5 - Mean Precipitation (Proportion July - Sep) - 2020-2050 - RCP8.5 - Min Temperature (Mean: Annual) - 2020-2050 - RCP4.5 - Max Temperature (Mean: Annual) - 2020-2050 - RCP8.5 - Min Precipitation (Proportion May - Oct) - 1980-2010 Precipitation (Proportion May - Oct) - 2070-2100 - RCP4.5 - Min Precipitation (Proportion May - Oct) - 2020-2050 - RCP4.5 - Min Precipitation (Mean: Apr - June) - 2070-2100 - RCP4.5 - Max Precipitation (Mean: Dec - Mar) - 2020-2050 - RCP4.5 - Min Precipitation (Mean: July - Sep) - 2070-2100 - RCP8.5 - Mean Precipitation (Mean: July - Sep) - 2020-2050 - RCP8.5 - Min Temperature (Mean: Apr - June) - 2020-2050 - RCP8.5 - Mean Temperature (Mean: Dec - Mar) - 2070-2100 - RCP8.5 - Min Temperature (Minimum: January) - 2070-2100 - RCP8.5 - Mean Natural Resource Condition Assessments