Skip to main content
Advanced Search

Filters: Tags: climate data (X)

83 results (14ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This set of 4 rasters shows mean annual temperature (deg C * 10) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were...
thumbnail
This set of 4 rasters shows mean annual precipitation (mm) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were converted...
thumbnail
This set of 4 rasters shows mean summer (May to Sep) precipitation (mm) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here,...
thumbnail
This set of 4 rasters shows mean summer (May to Sep) precipitation (mm) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
This report describes the progress made by the Integrated Ecosystem Model (IEM) for Alaska and Northwest Canada Project for the full duration of the project (September 1, 2011 through August 31, 2016).This primary goal in this project was to develop the IEM modeling framework to integrate the driving components for and the interactions among disturbance regimes, permafrost dynamics, hydrology, and vegetation succession/migration for Alaska and Northwest Canada. The major activities of the project include (1) development and delivery of input data sets, (2) model coupling, (3) evaluation and applications of fire and vegetation dynamics, (4) evaluation and application of ecosystem carbon and energy balance, (5) evaluation...
thumbnail
A meteorological station equipped with a rain gauge, atmospheric pressure sensor, temperature and relative humidity sensor, soil moisture sensor, and an anemometer (measuring wind speed, gust speed, and direction) was deployed at a cinder field in Sunset Crater National Monument, Arizona. This dataset has been collecting data every 15 minutes with the goal to provide atmospheric context for a subsurface temperature profiler buried nearby.
thumbnail
This set of 4 rasters shows mean temperature of the warmest month (deg C * 10) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows winter (Dec to Feb) mean temperature (deg C * 10) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows precipitation as snow (mm) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were converted...
thumbnail
This set of 4 rasters shows mean temperature of the warmest month (deg C * 10) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows mean temperature of the warmest month (deg C * 10) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
Climatic elements, such as temperature, precipitation, snow, wind, pressure, etc., are included and intended to portray the climate of the United States. The point data used to create the maps came from the National Climatic Data Center's extensive climate data archives. GIS tools used include ESRI's ArcInfo, ArcView, ArcIMS, as well as PRISM, a proprietary climate model. The Atlas' internet interface (html and javascript) communicates with ArcIMS to render the images.
thumbnail
This set of 4 rasters shows winter (Dec to Feb) precipitation (mm) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
This set of 4 rasters shows summer (Jun to Aug) precipitation (mm) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were...
thumbnail
This set of 4 rasters shows summer (Jun to Aug) mean temperature (deg C * 10) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
This study identifies areas with ecosystem performance anomalies (EPA) within the Upper Colorado River Basin (UCRB) during 2005?2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions) at the 90% level of confidence. The EPA maps were validated using ?percentage of bare soil? ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming) tended to have a higher (lower) percentage of bare soil, suggesting that our...
thumbnail
This set of 4 rasters shows mean temperature of the warmest month (deg C * 10) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
This set of 4 rasters shows winter (Dec to Feb) precipitation (mm) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
This set of 4 rasters shows mean temperature of the warmest month (deg C * 10) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows winter (Dec to Feb) mean temperature (deg C * 10) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...


map background search result map search result map Climate Atlas of the United States Mean Annual Precipitation under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Temperature under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Summer (May to Sep) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Precipitation as Snow under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Mean Temperature under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Precipitation under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Summer (May to Sep) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Meteorological data at a Sunset Crater cinder field: March 2021 to May 2022 Meteorological data at a Sunset Crater cinder field: March 2021 to May 2022 Climate Atlas of the United States Winter (Dec to Feb) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Precipitation under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Summer (May to Sep) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Precipitation under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Temperature under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Summer (May to Sep) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Precipitation as Snow under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Mean Temperature under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble)