Skip to main content
Advanced Search

Filters: Tags: climate scenarios (X)

71 results (21ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Daily downscaled data for the Climate Model simulations conducted for the IPCC Fourth Assessment The Climate Impacts Group has analyzed the climate response for the Pacific Northwest simulated by several climate models. These simulations were prepared by climate modeling centers worldwide for the Fourth IPCC Assessement. For consistency with prior work, we include the current versions of models used previously: Hadcm3, Echam5, CCSM3, and PCM1 (CCSM3 is the successor to both the NCAR CSM and DOE PCM). To these we added five additional models to better represent the range of models participating in AR4. These are: CNRM_CM3, CSIRO_MK3 Miroc_3.2, IPSL_CM4, CGCM_3.1, and GISS_ER. Summary statistics for these models...
thumbnail
ClimateWNA: A program to generate high-resolution climate data for climate change studies and applications in western North America Overview ClimateWNA extracts and downscales PRISM (Daly et al. 2002) monthly data (2.5 x 2.5 arcmin) for the reference period (1961-1990), and calculates seasonal and annual climate variables for specific locations based on latitude, longitude and elevation (optional) for western North America, shown in the map on the right. This program also downscales and integrates historical (1901-2011) (Mitchell and Jones 2005 for 1901-2009) and future climate data (2020s, 2050s and 2080s) generated by various global circulation models. The output includes both directly calculated and derived...
thumbnail
This set of 4 rasters shows mean temperature of the warmest month (deg C * 10) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
This set of 4 rasters shows winter (Dec to Feb) precipitation (mm) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
This set of 4 rasters shows summer (Jun to Aug) precipitation (mm) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were...
thumbnail
This set of 4 rasters shows summer (Jun to Aug) mean temperature (deg C * 10) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows mean temperature of the warmest month (deg C * 10) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
This set of 4 rasters shows winter (Dec to Feb) precipitation (mm) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
This set of 4 rasters shows mean temperature of the warmest month (deg C * 10) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows winter (Dec to Feb) mean temperature (deg C * 10) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows summer (Jun to Aug) mean temperature (deg C * 10) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
thumbnail
This set of 4 rasters shows mean summer (May to Sep) precipitation (mm) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here,...
thumbnail
This set of 4 rasters shows mean annual precipitation (mm) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were converted...
thumbnail
This set of 4 rasters shows mean temperature of the coldest month (deg C * 10) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.
This project facilitated the engagement of the North Central Climate Adaptation Science Center’s (NC CASC) Climate Foundational Science Area (FSA) to identify and address the physical climate science challenges that are important for ecologists and natural resource managers in the NC CASC region, as well as meet their needs for climate information to assess impacts to their desired system and develop strategies for effective climate adaptation. A drought index called the Landscape Evaporative Response Index (LERI) was developed to provide a near real-time assessment of soil moisture conditions across the Contiguous United States (CONUS) based on satellite observations. This projects also supported development of...
thumbnail
This set of 4 rasters shows mean annual precipitation (mm) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were converted...
thumbnail
This set of 4 rasters shows winter (Dec to Feb) precipitation (mm) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here,...
thumbnail
This set of 4 rasters shows mean annual temperature (deg C * 10) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were...
The Integrated Scenarios (IS) of the Future Northwest Environment project resulted in several datasets describing projected changes in climate, hydrology and vegetation for the 21st century over the Northwestern US. At the conclusion of the IS project in August 2014, it was recognized that many data users would be challenged to use the IS data due to 1) the sheer size of these datasets (~ 20 Terabytes of data), 2) the specific file format (netCDF) of the IS data, and 3) the unfamiliarity of appropriate methods for analyzing climate scenarios. To address these issues, the Integrated Scenarios Tools project was funded with the aim of creating a website for the IS project focusing on providing: 1) information on and...
thumbnail
This set of 4 rasters shows precipitation as snow (mm) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America.


map background search result map search result map Climate Impacts Group: Daily Downscaled Data for the Pacific Northwest Pacific Climate Impacts Consortium ClimateWNA Mean Annual Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Precipitation under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Temperature under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Summer (May to Sep) Precipitation under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Mean Temperature under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Precipitation under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Precipitation under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the coldest month under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Mean Temperature under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Precipitation as Snow under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Climate Impacts Group: Daily Downscaled Data for the Pacific Northwest Pacific Climate Impacts Consortium ClimateWNA Winter (Dec to Feb) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Precipitation under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the coldest month under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Mean Temperature under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Precipitation as Snow under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Precipitation under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Temperature under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Summer (May to Sep) Precipitation under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Mean Temperature under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Precipitation under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble)