Skip to main content
Advanced Search

Filters: Tags: climate-change effects (X) > Date Range: {"choice":"year"} (X) > Types: OGC WMS Layer (X)

6 results (111ms)   

Filters
Date Types (for Date Range)
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
First Release: November 2018 The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California covers the coastline from Pt. Conception to Golden Gate Bridge....
thumbnail
Climate change is expected to alter stream temperature and flow regimes over the coming decades, and in turn influence distributions of aquatic species in those freshwater ecosystems. To better anticipate these changes, there is a need to compile both short- and long-term stream temperature data for managers to gain an understanding of baseline conditions, historic trends, and future projections. Unfortunately, many agencies lack sufficient resources to compile, conduct quality assurance and control, and make accessible stream temperature data collected through routine monitoring. Yet, pooled data from many sources, even if temporally and spatially inconsistent, can have great value both in the realm of stream temperature...
thumbnail
This dataset contains projections of shoreline change and uncertainty bands across California for future scenarios of sea-level rise (SLR). Projections were made using the Coastal Storm Modeling System - Coastal One-line Assimilated Simulation Tool (CoSMoS-COAST), a numerical model run in an ensemble forced with global-to-local nested wave models and assimilated with satellite-derived shoreline (SDS) observations across the state. Scenarios include 25, 50, 75, 100, 125, 150, 175, 200, 250, 300 and 500 centimeters (cm) of SLR by the year 2100. Output for SLR of 0 cm is also included, reflective of conditions in 2000.
thumbnail
This data set consists of physics-based Delft3D-FLOW and WAVE hydrodynamic models input files used for Coastal Storm Modeling System (CoSMoS) Tier 1 simulations. Tier 1 simulations cover the Northern California open-coast region, from the Golden Gate Bridge to the California/Oregon state border, and they provide boundary conditions to higher-resolution simulations. Simulations are run for several storm events (covering a range of no storm, 1-year, 20-year, and 100-year coastal storm conditions) and sea-level rise (SLR) scenarios.
thumbnail
Throughout western North America, warming associated with climate change is leading to both earlier spring peak streamflows and earlier seed dispersal, potentially reducing seedling establishment and in turn reducing the quality of riparian (near-river) forests, which provide critical habitat for diverse birds, mammals, reptiles, amphibians, and insects, and food and shade for fish and other aquatic animals. This project aimed to predict these effects of climate change on cottonwood and willow tree regeneration in western forests by linking models of seed dispersal timing, streamflow hydrology, and seedling establishment, focusing on the upper South Platte River Basin as a study area. Results are expected to help...
thumbnail
This dataset consists of physics-based Delft3D-FLOW and WAVE hydrodynamic models input files used for Coastal Storm Modeling System (CoSMoS) tier 2 simulations. These sub-regional simulations cover portions of the Northern California open-coast region; boundary conditions are derived from regional Tier 1 simulations. These Simulations are run for several storm events (covering a range of no storm, 1-year, 20-year, and 100-year coastal storm conditions) and sea-level rise (SLR) scenarios.


    map background search result map search result map Projecting Future Climate Effects on Cottonwood and Willow Seed Dispersal and Tree Regeneration in Western Riparian Forests NorEaST: A Tool to Understand the Responses of Fish to Changes in Stream Temperature Coastal Storm Modeling System (CoSMoS) for Central California, v3.1 CoSMoS 3.2 Northern California Tier 1 FLOW-WAVE model input files Projections of shoreline change for California due to 21st century sea-level rise CoSMoS 3.2 Northern California sub-regional tier 2 FLOW-WAVE model input files Projecting Future Climate Effects on Cottonwood and Willow Seed Dispersal and Tree Regeneration in Western Riparian Forests CoSMoS 3.2 Northern California sub-regional tier 2 FLOW-WAVE model input files Coastal Storm Modeling System (CoSMoS) for Central California, v3.1 CoSMoS 3.2 Northern California Tier 1 FLOW-WAVE model input files Projections of shoreline change for California due to 21st century sea-level rise NorEaST: A Tool to Understand the Responses of Fish to Changes in Stream Temperature