Skip to main content
Advanced Search

Filters: Tags: coastal dunes (X)

8 results (59ms)   

View Results as: JSON ATOM CSV
This U.S. Geological Survey (USGS) data release represents geospatial data that are the beach mouse presence outputs from the Biological Objectives for the Gulf Coast Project’s Beach Mice Bayesian network model. The USGS partnered with the U.S. Fish and Wildlife Service (USFWS), the Florida Fish and Wildlife Conservation Commission, and their conservation partners to develop a Bayesian Network model that predicts the annual probability of beach mouse presence at a local (30-m) scale. The model was used to predict the annual probability of presence across a portion of the USFWS's Central Gulf and Florida Panhandle Coast Biological Planning Unit. This spatial extent included critical habitat for three endangered sub-species...
thumbnail
This U.S. Geological Survey (USGS) data release represents tabular data that were used to develop the Biological Objectives for the Gulf Coast Project’s Beach Mice Bayesian network model. The USGS partnered with the U.S. Fish and Wildlife Service (USFWS), the Florida Fish and Wildlife Conservation Commission, and their conservation partners to develop a Bayesian Network model that predicts the annual probability of beach mouse presence at a local (30-m) scale. The model was used to predict the annual probability of presence across a portion of the USFWS's Central Gulf and Florida Panhandle Coast Biological Planning Unit. This spatial extent included critical habitat for three endangered subspecies of beach mice...
This U.S. Geological Survey (USGS) data release represents geospatial data that are the beach mouse presence outputs from the Biological Objectives for the Gulf Coast Project’s Beach Mice Bayesian network model. The USGS partnered with the U.S. Fish and Wildlife Service (USFWS), the Florida Fish and Wildlife Conservation Commission, and their conservation partners to develop a Bayesian Network model that predicts the annual probability of beach mouse presence at a local (30-m) scale. The model was used to predict the annual probability of presence across a portion of the USFWS's Central Gulf and Florida Panhandle Coast Biological Planning Unit. This spatial extent included critical habitat for three endangered sub-species...
This U.S. Geological Survey (USGS) data release represents tabular data that were used to develop the Biological Objectives for the Gulf Coast Project’s Beach Mice Bayesian network model. The USGS partnered with the U.S. Fish and Wildlife Service (USFWS), the Florida Fish and Wildlife Conservation Commission, and their conservation partners to develop a Bayesian Network model that predicts the annual probability of beach mice presence at a local (30-m) scale. The model was used to predict the annual probability of presence across a portion of the USFWS's Central Gulf and Florida Panhandle Coast Biological Planning Unit. This spatial extent included critical habitat for three endangered subspecies of beach mice (Peromyscus...
This U.S. Geological Survey (USGS) data release represents tabular and geospatial data for the Biological Objectives for the Gulf Coast Project’s Beach Mice Bayesian network model. The data release was produced in compliance with 'open data' requirements as a way to make the scientific products associated with USGS research efforts and publications available to the public. The release consists of six items: 1. Bayesian network model that predicts the annual probability of beach mouse presence at a 30-m resolution in Florida coastal habitat (Tabular datasets) 2. Bayesian network model beach mice casefile (Tabular dataset) 3. Bayesian network model detection casefile (Tabular dataset) 4. Bayesian network model output...
This U.S. Geological Survey (USGS) data release represents geospatial data that are the beach mouse presence outputs from the Biological Objectives for the Gulf Coast Project’s Beach Mice Bayesian network model. The USGS partnered with the U.S. Fish and Wildlife Service (USFWS), the Florida Fish and Wildlife Conservation Commission, and their conservation partners to develop a Bayesian Network model that predicts the annual probability of beach mouse presence at a local (30-m) scale. The model was used to predict the annual probability of presence across a portion of the USFWS's Central Gulf and Florida Panhandle Coast Biological Planning Unit. This spatial extent included critical habitat for three endangered sub-species...
Between Point Grenville, Washington, and Point Conception, California (1500 km distance) 21 dune fields record longshore transport in 20 littoral cells during the late Holocene. The direction of predominant littoral transport is established by relative positions of dune fields (north, central, or south) in 17 representative littoral cells. Dune field position is north of cell midpoints in northernmost Oregon and Washington, but is south of cell midpoints in southern Oregon and California. Downdrift sand trapping occurs at significant changes in shoreline angle and/or at bounding headlands that project at least 2.5 km seaward from the general coastal trend. Sand bypassing occurs around small headlands of less than...
This U.S. Geological Survey (USGS) data release represents tabular data that were used to develop the Biological Objectives for the Gulf Coast Project’s Beach Mice Bayesian network model. The USGS partnered with the U.S. Fish and Wildlife Service (USFWS), the Florida Fish and Wildlife Conservation Commission, and their conservation partners to develop a Bayesian Network model that predicts the annual probability of beach mice presence at a local (30-m) scale. The model was used to predict the annual probability of presence across a portion of the USFWS's Central Gulf and Florida Panhandle Coast Biological Planning Unit. This spatial extent included critical habitat for three endangered subspecies of beach mice (Peromyscus...


    map background search result map search result map Data for Beach Mice Bayesian Network Model Bayesian network model that predicts the annual probability of beach mouse presence at a 30-m resolution in Florida coastal habitat Bayesian network model beach mice casefile Bayesian network model detection casefile Bayesian network model beach mice casefile Bayesian network model that predicts the annual probability of beach mouse presence at a 30-m resolution in Florida coastal habitat Bayesian network model detection casefile Data for Beach Mice Bayesian Network Model