Filters: Tags: coastal wetlands (X)
144 results (10ms)
Filters
Date Range
Extensions Types Contacts
Categories Tag Types
|
The Barrier Island Comprehensive Monitoring (BICM) program was developed by Louisiana’s Coastal Protection and Restoration Authority (CPRA) and is implemented as a component of the System Wide Assessment and Monitoring Program (SWAMP). The program uses both historical data and contemporary data collections to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture and geotechnical properties, environmental processes, and vegetation composition. Examples of BICM datasets include still and video aerial photography for documenting shoreline changes, shoreline positions, habitat mapping, land change analyses, light detection and ranging (lidar) surveys for topographic...
Categories: Data Release - Revised;
Tags: Cameron Parish,
East Chenier Region,
Gulf of Mexico,
Louisiana,
Louisiana Coastal,
The Barrier Island Comprehensive Monitoring (BICM) program was developed by Louisiana’s Coastal Protection and Restoration Authority (CPRA) and is implemented as a component of the System Wide Assessment and Monitoring Program (SWAMP). The program uses both historical data and contemporary data collections to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture and geotechnical properties, environmental processes, and vegetation composition. Examples of BICM datasets include still and video aerial photography for documenting shoreline changes, shoreline positions, habitat mapping, land change analyses, light detection and ranging (lidar) surveys for topographic...
Categories: Data Release - Revised;
Tags: Cameron Parish,
Gulf of Mexico,
Louisiana,
Louisiana Coastal,
USGS Science Data Catalog (SDC),
The Barrier Island Comprehensive Monitoring (BICM) program was developed by Louisiana’s Coastal Protection and Restoration Authority (CPRA) and is implemented as a component of the System Wide Assessment and Monitoring Program (SWAMP). The program uses both historical data and contemporary data collections to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture and geotechnical properties, environmental processes, and vegetation composition. Examples of BICM datasets include still and video aerial photography for documenting shoreline changes, shoreline positions, habitat mapping, land change analyses, light detection and ranging (lidar) surveys for topographic...
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
Categories: Data;
Types: Downloadable,
GeoTIFF,
Map Service,
Raster;
Tags: Alabama,
Conterminous United States,
Florida,
Gulf of Mexico Coast,
Louisiana,
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
Categories: Data;
Types: Downloadable,
GeoTIFF,
Map Service,
Raster;
Tags: Alabama,
Conterminous United States,
Florida,
Gulf of Mexico Coast,
Louisiana,
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
Categories: Data;
Types: Downloadable,
GeoTIFF,
Map Service,
Raster;
Tags: Alabama,
Conterminous United States,
Florida,
Gulf of Mexico Coast,
Louisiana,
We assessed the resilience of wetlands to sea-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to oligohaline marsh by measuring processes controlling wetland elevation. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems.
Categories: Data;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Georgia,
Savannah River,
South Carolina,
USGS Science Data Catalog (SDC),
Waccamaw River,
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
Prior research has shown that sediment budgets, and therefore stability, of microtidal marsh complexes scale with areal unvegetated to vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. This effort has developed the UVVR metric using readily available satellite imagery for the coastal areas of the contiguous United States (CONUS). These datasets provide annual averages of 1) developed, 2) vegetated, 3) unvegetated ratios and 4) an unvegetated to vegetated ratio (UVVR) at 30-meter resolution over the coastal areas of the contiguous United States for the years 2014-2018. Additionally, multi-year average values of vegetated ratio, its standard...
Coastal wetlands store more carbon than most ecosystems globally. However, little is known about the mechanisms that control the loss of organic matter in coastal wetlands at the landscape scale, and how sea-level rise will impact this important ecological function.
Categories: Data;
Types: Citation,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: Barataria Basin,
Louisiana,
Organic matter decomposition,
Terrebonne Basin,
asymptote,
A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
Categories: Project;
Types: Map Service,
OGC WFS Layer,
OGC WMS Layer,
OGC WMS Service;
Tags: 2012,
CASC,
Climate change,
Completed,
FY 2012,
Categories: Publication;
Types: Citation;
Tags: Barrier island,
Coastal wetlands,
Coastal zones,
Dredging,
EE 407.3 Coastal Engineering; EE 902.3 Legal Aspects; EE 471,
SLAMM-View is a web browser-based application that provides tools for improved understanding of results from research projects that employ the Sea Level Affecting Marshes Model (SLAMM). Version 2.0 of SLAMM-View was designed for a user-friendly, workflow-based approach to assess impacts of sea-level rise (SLR) on coastal areas with both visualization and analysis functionality. SLAMM-View provides simultaneous comparison between both current and future conditions out to the year 2100, and among different SLR scenarios (e.g., 0.4 meter vs. 1 meter), using interactive maps and tabular reporting capabilities. To date, SLAMM-View provides access to SLAMM simulation results for the entire coastlines of 5 states, and...
In the next 100 years, accelerated sea-level rise (SLR) and urbanization will greatly modify coastal landscapes across the globe. More than one-half of coastal wetlands in the contiguous United States are located along the Gulf of Mexico coast. In addition to supporting fish and wildlife habitat, these highly productive wetlands support many ecosystem goods and services including storm protection, recreation, clean water, and carbon sequestration. Historically, tidal saline wetlands (TSWs) have adapted to sea-level fluctuations through lateral and vertical movement on the landscape. As sea levels rise in the future, some TSWs will adapt and migrate landward in undeveloped low-lying areas where migration corridors...
Categories: Data;
Types: ArcGIS REST Map Service,
ArcGIS Service Definition,
Downloadable,
Map Service;
Tags: Northern Gulf of Mexico,
adaptation,
adaptation,
climate change,
climate change,
Water levels in meters from four wells in Moneystump marsh at Blackwater National Wildlife Refuge, MD. Two wells are located in the upland forest; one well is located in the marsh-forest transition zone (ecotone); and one well is located in the marsh. Water depth of the adjacent creek is reported in meters. Data covers the time span from November 11 2016 - November 11 2017. Pressure transducer data from the wells corrected to water level using barometric pressure loggers located in 3 locations throughout the experiment. Water levels are in units of meters referenced to vertical datum NAVD88. Raw pressure data is in units of kilopascals (kPa). Pressure transducer locations and elevation data from GNSS and digital...
Categories: Data;
Tags: Blackwater National Wildlife Refuge,
Chesapeake Bay,
Climatology,
Coastal Wetlands,
Coastal and Estuarine,
The tables presented here quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period by 10-digit Hydrologic Unit Code (HUC10) in the Gulf of Mexico. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
Categories: Data;
Types: Downloadable,
GeoTIFF,
Map Service,
Raster;
Tags: Alabama,
Conterminous United States,
Florida,
Gulf of Mexico Coast,
Louisiana,
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
Categories: Data;
Types: Downloadable,
GeoTIFF,
Map Service,
Raster;
Tags: Alabama,
Conterminous United States,
Florida,
Gulf of Mexico Coast,
Louisiana,
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
Categories: Data;
Types: Downloadable,
GeoTIFF,
Map Service,
Raster;
Tags: Alabama,
Conterminous United States,
Florida,
Gulf of Mexico Coast,
Louisiana,
The Barrier Island Comprehensive Monitoring (BICM) program was developed by Louisiana’s Coastal Protection and Restoration Authority (CPRA) and is implemented as a component of the System Wide Assessment and Monitoring Program (SWAMP). The program uses both historical data and contemporary data collections to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture and geotechnical properties, environmental processes, and vegetation composition. Examples of BICM datasets include still and video aerial photography for documenting shoreline changes, shoreline positions, habitat mapping, land change analyses, light detection and ranging (lidar) surveys for topographic...
Categories: Data;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
Shapefile;
Tags: Chandeleur Islands Region,
Gulf of Mexico,
Iberia Parish,
Louisiana,
Louisiana Coastal,
|
![]() |