Skip to main content
Advanced Search

Filters: Tags: coastal wetlands (X) > Types: Map Service (X)

66 results (14ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Coastal wetlands store more carbon than most ecosystems globally. However, little is known about the mechanisms that control the loss of organic matter in coastal wetlands at the landscape scale, and how sea-level rise will impact this important ecological function.
thumbnail
We assessed the resilience of wetlands to sea-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to oligohaline marsh by measuring processes controlling wetland elevation. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
thumbnail
Coastal wetlands and the many beneficial services they provide (e.g., purifying water, buffering storm surge, providing habitat) are changing and disappearing as a result of sea-level rise brought about by climate change. Scientists have developed a wealth of information and resources to predict and aid decision-making related to sea-level rise. However, while some of these resources are easily accessible by coastal managers, many others require more expert knowledge to understand or utilize. The goal of this project was to collate science and models pertaining to the effects of sea-level on coastal wetlands into a format that would be accessible and useful to resource managers. Researchers conducted training sessions...
These datasets were created from high-resolution (1-m) datasets representing median conditions during a 2014-2019 time period. These datasets used National Agricultural Inventory Program (NAIP) imagery, as well as Sentinel-2 satellite imagery, to estimate the fractional composition of unvegetated, vegetated, and water in each pixel. Random samples from these high resolution datasets were used to inform calibration and validation of the moderate resolution (30-m) Landsat datasets. To facilitate comparability with the Landsat datasets, these data were aggregated up to 30-m resolution.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
thumbnail
The Barrier Island Comprehensive Monitoring (BICM) program was developed by Louisiana’s Coastal Protection and Restoration Authority (CPRA) and is implemented as a component of the System Wide Assessment and Monitoring Program (SWAMP). The program uses both historical data and contemporary data collections to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture and geotechnical properties, environmental processes, and vegetation composition. Examples of BICM datasets include still and video aerial photography for documenting shoreline changes, shoreline positions, habitat mapping, land change analyses, light detection and ranging (lidar) surveys for topographic...
thumbnail
The Barrier Island Comprehensive Monitoring (BICM) program was developed by Louisiana’s Coastal Protection and Restoration Authority (CPRA) and is implemented as a component of the System Wide Assessment and Monitoring (SWAMP) program. The program uses both historical data and contemporary data collections to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment texture and geotechnical properties, environmental processes, and vegetation composition. Examples of BICM datasets include still and video aerial photography for documenting shoreline changes, shoreline positions, habitat mapping, land change analyses, light detection and ranging (lidar) surveys for topographic...
In the next 100 years, accelerated sea-level rise (SLR) and urbanization will greatly modify coastal landscapes across the globe. More than one-half of coastal wetlands in the contiguous United States are located along the Gulf of Mexico coast. In addition to supporting fish and wildlife habitat, these highly productive wetlands support many ecosystem goods and services including storm protection, recreation, clean water, and carbon sequestration. Historically, tidal saline wetlands (TSWs) have adapted to sea-level fluctuations through lateral and vertical movement on the landscape. As sea levels rise in the future, some TSWs will adapt and migrate landward in undeveloped low-lying areas where migration corridors...
thumbnail
Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e. how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? We measured above- and belowground production in four wetland types that span...
thumbnail
Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e. how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? We measured above- and belowground production in four wetland types that span...
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
thumbnail
This product provides spatial variations in wave thrust along shorelines in Massachusetts and Rhode Island. Natural features of relevance along the State coast are salt marshes. In recent times, marshes have been eroding primarily through lateral erosion. Wave thrust represents a metric of wave attack acting on marsh edges. The wave thrust is calculated as the vertical integral of the dynamic pressure of waves. This product uses a consistent methodology with sufficient spatial resolution to include the distinct features of each marsh system. Waves under different climatological wind forcing conditions were simulated using the coupled ADCIRC/SWAN model system. The estuarine and bay areas are resolved with horizontal...
thumbnail
Coastal wetlands store more carbon than most ecosystems globally. However, little is known about the mechanisms that control the loss of organic matter in coastal wetlands at the landscape scale, and how sea-level rise will impact this important ecological function.


map background search result map search result map A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models Litter quality Environmental data Primary production across a coastal wetland landscape in Louisiana, U.S.A. above- and belowground primary production (2012-2014) data Primary production across a coastal wetland landscape in Louisiana, U.S.A. environmental data (2012-2014) Elevation change along a coastal wetland landscape gradient from tidal freshwater forested wetland to oligohaline marsh in the Southeastern U.S.A. (2009-2014) data Riverine Sand Mining/Scofield Island Restoration (BA-40): 2014 habitat classification (ver. 1.1, August 2021) A NAIP and Sentinel-2 based quantification of fractional composition of unvegetated, vegetated, and water in the Gulf of Mexico Coast, 2014-2019 used for calibration and validation of Landsat based datasets L5_1989_GOM_Fractional_Land_FAV_SAV_Water L5_1992_GOM_Fractional_Land_FAV_SAV_Water L5_1995_GOM_Fractional_Land_FAV_SAV_Water L5_1999_GOM_Fractional_Land_FAV_SAV_Water L5_2000_GOM_Fractional_Land_FAV_SAV_Water L5_2001_GOM_Fractional_Land_FAV_SAV_Water L5_2008_GOM_Fractional_Land_FAV_SAV_Water_post_Hurricanes_Gustav_Ike L8_2013_GOM_Fractional_Land_FAV_SAV_Water L8_2016_GOM_Fractional_Land_FAV_SAV_Water Wave thrust values at point locations along the shorelines of Massachusetts and Rhode Island Pass Chaland to Grand Bayou Pass Barrier Shoreline Restoration (BA-35): 2016 habitat classification Riverine Sand Mining/Scofield Island Restoration (BA-40): 2014 habitat classification (ver. 1.1, August 2021) Pass Chaland to Grand Bayou Pass Barrier Shoreline Restoration (BA-35): 2016 habitat classification Primary production across a coastal wetland landscape in Louisiana, U.S.A. above- and belowground primary production (2012-2014) data Primary production across a coastal wetland landscape in Louisiana, U.S.A. environmental data (2012-2014) Litter quality Environmental data Elevation change along a coastal wetland landscape gradient from tidal freshwater forested wetland to oligohaline marsh in the Southeastern U.S.A. (2009-2014) data Wave thrust values at point locations along the shorelines of Massachusetts and Rhode Island L5_1989_GOM_Fractional_Land_FAV_SAV_Water L5_1992_GOM_Fractional_Land_FAV_SAV_Water L5_1995_GOM_Fractional_Land_FAV_SAV_Water L5_1999_GOM_Fractional_Land_FAV_SAV_Water L5_2000_GOM_Fractional_Land_FAV_SAV_Water L5_2001_GOM_Fractional_Land_FAV_SAV_Water L5_2008_GOM_Fractional_Land_FAV_SAV_Water_post_Hurricanes_Gustav_Ike L8_2013_GOM_Fractional_Land_FAV_SAV_Water L8_2016_GOM_Fractional_Land_FAV_SAV_Water A NAIP and Sentinel-2 based quantification of fractional composition of unvegetated, vegetated, and water in the Gulf of Mexico Coast, 2014-2019 used for calibration and validation of Landsat based datasets A Handbook for Resource Managers to Understand and Utilize Sea-Level Rise and Coastal Wetland Models