Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: decision support (X)

574 results (18ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
We propose to support the revision and implementation of the South Atlantic Landscape Conservation Cooperative’s Conservation Blueprint by integrating its Ecosystem Indicators into a structured decision support system that makes explicit how the Indicators are interrelated and how these will respond to management and policy interventions aimed at improving the conservation status of the South Atlantic region. Our specific objectives are to (1) develop ecological production functions that predict theecological impacts of selected conservation actions relative to current conditions, and to propagate these impacts through other affected systems or functions; (2) codify protocols for updating and curating geospatial...
thumbnail
The North Atlantic Region of the United States and Canada boasts diverse habitats, from coasts to mountains, that support endemic and rare plant species. However, recent conservation actions and prioritization efforts in this region have neglected to include plants. We have conducted a conservation assessment for vascular plants that occur in the North Atlantic Landscape Conservation Cooperative. Using the best scientific data, we have developed a list of vascular plant species of concern for the region. We have refined the list with the input of Natural Heritage and other regional botanists and experts. For each species, we have determined regional conservation responsibility, developed regional ranks, updated...
Vernal or seasonal pools are small, temporary bodies of water that can serve as critical habitat for frogs, salamanders, reptiles, invertebrates, and other species. The first step in developing effective conservation strategies for vernal pools and associated wildlife species is to know where on the landscape these small wetlands exist. Although several several states and organizations in the Northeast region have initiated coordinated vernal pool mapping projects, this information has never been assembled in one place.Currently, the Vernal Pool Data Cooperative (VPDC) consists of over 60,000 vernal pool locations submitted by cooperators representing ten states and two Canadian provinces from Virginia to Quebec’s...
thumbnail
This project will create a targeted and easily understandable guide to tools that support landscape-level planning in the face of climate change for NPLCC partners. The guide will build on previous NPLCC research on decision support needs with an emphasis on tools currently in use in the region. A survey of NPLCC partners will discover who is currently using or planning to use tools in the region, tools they are using, how well these tools are meeting their needs, and regional and outside experts engaged in tool use. Additional tools research will provide information on tools not currently in use in the region that could also provide needed functionality.
thumbnail
The central objective of this project was to answer two questions: 1) how downscaled climate datasets, modeled vegetation changes, and information on estimated species sensitivities can be used to develop climate change adaptation strategies, and 2) how model results and datasets can be made more useful for informing the management of species and landscapes. To answer these questions, we identified enthusiastic partners working in two very different complex landscapes within the North Pacific Landscape Conservation Cooperative (NPLCC): 1) the British Columbia Park system, specifically the midcoast region, and 2) the National Wildlife Refuge system in the Willamette Valley, OR. The issues and concerns of each group...
thumbnail
The Data Needs Assessment research project was undertaken to review the variety of resources on conservation planning to provide packages of products, data, and identified data gaps to improve conservation planning in the Appalachian LCC. A suite of core conservation planning products and data from principal investigators at Clemson University are now available to the Cooperative.“Deliverables from this research include:An analysis of State Wildlife Action Plans in the Appalachian LCC that describe how information contained in these plans can be linked to integrate state and local-scale efforts into a regional conservation framework;A list of 21 conservation planning tools, describing function and relevance of each...
thumbnail
Provisional Tennessee State Wildlife Action Plan (TN-SWAP) terrestrial habitat priorities versus results of the population growth model developed by the Tennessee Chapter of The Nature Conservancy, 2008, converted to percent projected developed landcover in the year 2040. Spatial growth model was developed using population growth projections from the University of Tennessee Center for Business and Economic Research (UT-CBER), county urban growth boundaries, 2000 census blocks, and various ancillary datasets.
thumbnail
The South Central U.S. is one of the main agricultural regions in North America: annual agricultural production is valued at more than $44 billion dollars. However, as climate conditions change, the region is experiencing more frequent and severe droughts, with significant impacts on agriculture and broader consequences for land management. For example, in 2011 drought caused an estimated $7.6 billion in agricultural losses in Texas and an additional $1.6 billion in Oklahoma. Although there are many drought monitoring tools available, most of these tools were developed without input from the stakeholders, such as farmers and ranchers, who are intended to use them. The goal of this project is to assess the information...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...


map background search result map search result map Developing Effective Drought Monitoring Tools for Farmers and Ranchers in the South Central U.S. Hot, dry scenario forecast of climate suitability for joshua tree (Yucca brevifolia) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Warm, dry scenario forecast of climate suitability for spineless horsebrush (Tetradymia canescens) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Warm, dry scenario forecast of climate suitability for California black oak (Quercus kelloggii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2 projections Warm, dry scenario forecast of climate suitability for Douglas-fir (Pseudotsuga menziesii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, wet scenario forecast of climate suitability for California sycamore (Platanus racemosa) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Warm, dry scenario forecast of climate suitability for sugar pine (Pinus lambertiana) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, wet scenario forecast of climate suitability for lodgepole pine (Pinus contorta murrayana) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Hot, dry scenario forecast of climate suitability for mountain mahogany (Cercocarpus betuloides) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, wet scenario forecast of climate suitability for common chamise (Adenostoma fasciculatum) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Hot, wet scenario forecast of climate suitability for white fir (Abies concolor) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections NPLCC Guide to Planning Tools Applying Vulnerability Assessment Tools to Plan for Climate Adaptation:  Case Studies in the North Pacific LCC - Final Report Models of ecological uplift from conservation activities in the SALCC Prioritization and Conservation Status of Rare Plants in the North Atlantic Region Data Needs Assessment Provisional Tennessee State Wildlife Action Plan Potential Urban Growth Hot, dry scenario forecast of climate suitability for joshua tree (Yucca brevifolia) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Warm, dry scenario forecast of climate suitability for spineless horsebrush (Tetradymia canescens) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Warm, dry scenario forecast of climate suitability for California black oak (Quercus kelloggii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2 projections Warm, dry scenario forecast of climate suitability for Douglas-fir (Pseudotsuga menziesii) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, wet scenario forecast of climate suitability for California sycamore (Platanus racemosa) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Warm, dry scenario forecast of climate suitability for sugar pine (Pinus lambertiana) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, wet scenario forecast of climate suitability for lodgepole pine (Pinus contorta murrayana) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Hot, dry scenario forecast of climate suitability for mountain mahogany (Cercocarpus betuloides) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, wet scenario forecast of climate suitability for common chamise (Adenostoma fasciculatum) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections Hot, wet scenario forecast of climate suitability for white fir (Abies concolor) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 IPSL-CM4 A2 projections NPLCC Guide to Planning Tools Provisional Tennessee State Wildlife Action Plan Potential Urban Growth Models of ecological uplift from conservation activities in the SALCC Prioritization and Conservation Status of Rare Plants in the North Atlantic Region Data Needs Assessment Developing Effective Drought Monitoring Tools for Farmers and Ranchers in the South Central U.S. Applying Vulnerability Assessment Tools to Plan for Climate Adaptation:  Case Studies in the North Pacific LCC - Final Report