Skip to main content
Advanced Search

Filters: Tags: drought (X) > Types: Citation (X)

207 results (11ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
This research investigates the interannual variability of soil moisture as related to large-scale climate variability and also evaluates the spatial and temporal variability of modeled deep layer (40?140 cm) soil moisture in the Upper Colorado River Basin (UCRB). A three layers hydrological model VIC-3L (Variable Infiltration Capacity Model ? 3 layers) was used to generate soil moisture in the UCRB over a 50-year period. By using wavelet analysis, deep layer soil moisture was compared to the Palmer Drought Severity Index (PDSI), precipitation, and streamflow to determine whether deep soil moisture is an indicator of climate extremes. Wavelet and coherency analysis for the UCRB indicated a strong relationship between...
A severe sustained drought in the Colorado River Basin would cause economic damages throughout the Basin. An integrated hydrologic-economic-institutional model introduced here shows that consumptive water users in headwaters states are particularly vulnerable to very large shortfalls and hence large damages because their rights are effectively junior to downstream users. Chronic shortfalls to consumptive users relying on diversions in excess of rights under the Colorado River Compact are also possible. Nonconsumptive water uses (for hydropower and recreation) are severely affected during the worst drought years as instream flows are reduced and reservoirs are depleted. Damages to these uses exceeds those to consumptive...
ABSTRACT: Samples from 107 piñon pines (Pinns edulis) at four sites were used to develop a proxy record of annual (June to June) precipitation spanning the 1226 to 2001 AD interval for the Uinta Basin Watershed of northeastern Utah. The reconstruction reveals significant precipitation variability at interannual to decadal scales. Single-year dry events before the instrumental period tended to be more severe than those after 1900. In general, decadal scale dry events were longer and more severe prior to 1900. In particular, dry events in the late 13th, 16th, and 18th Centuries surpass the magnitude and duration of droughts seen in the Uinta Basin after 1900. The last four decades of the 20th Century also represent...
Evidence from woodrat middens and tree rings at Dutch John Mountain (DJM) in northeastern Utah reveal spatiotemporal patterns of pinyon pine (Pinus edulis Engelm.) colonization and expansion in the past millennium. The DJM population, a northern outpost of pinyon, was established by long-distance dispersal (approximately 40 km). Growth of this isolate was markedly episodic and tracked multidecadal variability in precipitation. Initial colonization occurred by AD 1246, but expansion was forestalled by catastrophic drought (1250-1288), which we speculate produced extensive mortality of Utah Juniper (Juniperus osteosperma (Torr.) Little), the dominant tree at DJM for the previous approximately 8700 years. Pinyon then...
Researchers representing each of the Colorado River Basin states as well as the Secretary of the Interior were presented with an interactive computer simulation of a progressively increasing drought and were given the collective opportunity to change the ways in which basin-wide and within-state water management were conducted. The purpose of this ?gaming? exercise was to identify rules for managing the Colorado River which are effective in preventing drought-caused damages to basin water users. This water management game was conducted three times, varying the collective choice roles for management of the river yet staying substantially within the current institution for management of the Colorado River known as...
There is growing evidence that the rate of warming is amplified with elevation, such that high-mountain environments experience more rapid changes in temperature than environments at lower elevations. Elevation-dependent warming (EDW) can accelerate the rate of change in mountain ecosystems, cryospheric systems, hydrological regimes and biodiversity. Here we review important mechanisms that contribute towards EDW: snow albedo and surface-based feedbacks; water vapour changes and latent heat release; surface water vapour and radiative flux changes; surface heat loss and temperature change; and aerosols. All lead to enhanced warming with elevation (or at a critical elevation), and it is believed that combinations...
Climate policy developers and natural resource managers frequently desire high-resolution climate data to prepare for future effects of climate change. But they face a long-standing problem: the vast majority of climate models have been run at coarse resolutions—from hundreds of kilometers in global climate models (GCMs) down to 25–50 kilometers in regional climate models (RCMs).
Abstract (from PNAS): Recent decades have seen droughts across multiple US river basins that are unprecedented over the last century and potentially longer. Understanding the drivers of drought in a long-term context requires extending instrumental data with paleoclimatic data. Here, a network of new millennial-length streamflow reconstructions and a regional temperature reconstruction from tree rings place 20th and early 21st century drought severity in the Upper Missouri River basin into a long-term context. Across the headwaters of the United States’ largest river basin, we estimated region-wide, decadal-scale drought severity during the “turn-of-the-century drought” ca. 2000 to 2010 was potentially unprecedented...
thumbnail
Final Report - Executive Summary: This final project report is prepared to summarize the research project titled “Assessing evapotranspiration rate changes for proposed restoration of the forested uplands of the Desert Landscape Conservation Cooperatives (LCC)” for the Desert LCC of the Bureau of Reclamation as a requirement for closing out the project. This report includes the scope of work, summary of research project, results, and conclusions.Among all of the components of the terrestrial water cycle, evapotranspiration (ET) consumes the largest amount of water. Accurate estimation of ET is very important to understand the influence of ET to the hydrologic response of recharge and runoff processes in the water...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, ATMOSPHERE, ATMOSPHERE, ATMOSPHERIC WATER VAPOR, ATMOSPHERIC WATER VAPOR, All tags...
Abstract (from http://www.bioone.org/doi/abs/10.3417/2017006): The Earth system is undergoing rapid, profound anthropogenic change. The primary axes of change include not only the climate system, but also the spread of invasive species, altered biogeochemical and hydrological cycles, modified disturbance regimes, and land degradation and conversion. These factors are influencing the distribution of species and the structure and function of ecosystems worldwide, interacting with climatic stressors that may preclude the persistence of many current species distributions and communities. Ecological disturbances such as wildfires and insect outbreaks can interact with climate variability to precipitate abrupt change...
Severe droughts cause widespread tree mortality and decreased growth in forests across the globe. Forest managers are seeking strategies to increase forest resistance (minimizing negative impacts during the drought) and resilience (maximizing recovery rates following drought). Limited experimental evidence suggests that forests with particular structural characteristics have greater capacity to resist change and or recover ecosystem function in the face of drought. However, the applicability of these results to practical forest conservation and management remains unclear. This project utilized an existing network of eight long-term, operational-scale, forest management experiments from Arizona to Maine to examine...
This management brief summarizes the results of a project evaluating the scientific body of research on climate adaptation actions relevant to ecological drought. This adaptation science assessment evaluated strategies developed and prioritized by participants at regional adaptation workshops by synthesizing supporting evidence from the literature. The brief presents findings on the benefits and limitations of these climate adaptation options from the accompanying report, Extremes to Ex-Streams: Ecological Drought Adaptation in a Changing Climate.
Abstract (from ScienceDirect): The U.S. Geological Survey (USGS) has developed the PRObability of Streamflow PERmanence (PROSPER) model, a GIS raster-based empirical model that provides streamflow permanence probabilities (probabilistic predictions) of a stream channel having year-round flow for any unregulated and minimally-impaired stream channel in the Pacific Northwest region, U.S. The model provides annual predictions for 2004–2016 at a 30-m spatial resolution based on monthly or annually updated values of climatic conditions and static physiographic variables associated with the upstream basin. Predictions correspond to any pixel on the channel network consistent with the medium resolution National Hydrography...
Abstract (from http://link.springer.com/article/10.1007/s11069-016-2376-z): Drought is among the most insidious types of natural disasters and can have devastating economic and human health impacts. This research analyzes the relationship between two readily accessible drought indices—the Palmer Drought Severity Index (PDSI) and Palmer Hydrologic Drought Index (PHDI)—and the damage incurred by such droughts in terms of monetary loss, over the 1975–2010 time period on monthly basis, for five states in the south-central USA. Because drought damage in the Spatial Hazards Events and Losses Database for the United States (SHELDUS™) is reported at the county level, statistical downscaling techniques were used to estimate...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/gdj3.47/abstract): Two datasets of soil temperature observations collected at Norman, Oklahoma, USA, were analysed to study horizontal and vertical variability in their observations. The first dataset comprised 15-min resolution soil temperature observations from 20 September 2011 to 18 November 2013 in seven plots across a 10-m transect. In each plot, sensors were located at depths of 5, 10, and 30 cm. All seven plots observed fairly consistent maximum soil temperature observations during the spring, fall, and winter months. Starting in late May, the observed spread in soil temperatures across the 10-m transect increased significantly until August when the...
The responses of individual species to environmental changes can be manifested at multiple levels that range from individual-level (i.e., behavioral responses) to population-level (i.e., demographic) impacts. Major environmental changes that ultimately result in population level impacts are often first detected as individual-level responses. For example, herbivores respond to limited forage availability during drought periods by increasing the duration of foraging periods and expanding home range areas to compensate for the reduction in forage. However, if the individual-level responses are not sufficient to compensate for reduced forage availability, reduced survival and reproductive rates may result. We studied...
Abstract (from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174045): Several studies have projected increases in drought severity, extent and duration in many parts of the world under climate change. We examine sources of uncertainty arising from the methodological choices for the assessment of future drought risk in the continental US (CONUS). One such uncertainty is in the climate models’ expression of evaporative demand (E0), which is not a direct climate model output but has been traditionally estimated using several different formulations. Here we analyze daily output from two CMIP5 GCMs to evaluate how differences in E0 formulation, treatment of meteorological driving data, choice of GCM,...
Abstract (from ScienceDirect): Paleohydrologic records can provide unique, long-term perspectives on streamflow variability and hydroclimate for use in water resource planning. Such long-term records can also play a key role in placing both present day events and projected future conditions into a broader context than that offered by instrumental observations. However, relative to other major river basins across the western United States, a paucity of streamflow reconstructions has to date prevented the full application of such paleohydrologic information in the Upper Missouri River Basin. Here we utilize a set of naturalized streamflow records for the Upper Missouri and an expanded network of tree-ring records...


map background search result map search result map Report and Publications: Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC Report and Publications: Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC