Skip to main content
Advanced Search

Filters: Tags: dynamic global vegetation model (X) > partyWithName:  Conservation Biology Institute (X)

8 results (9ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset represents the average amount of live tree carbon for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Simulated mean live forest carbon (output variable C_Forestyr in MC1 version B60, which includes both above and below-ground tree carbon) was determined for each HUC5 watershed. Units are grams per square meter. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and...
thumbnail
This dataset represents the average potential evaporation for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Mean potential evaporation (in mm H2O yr-1), was determined for each HUC5 watershed by averaging values of original ~ 4 km raster data. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003). The...
thumbnail
This dataset represents the average annual amount of water contributed to the stream network for each watershed, simulated by the model MC1 for the 30-year period 1971-2000. Simulated mean streamflow (stormflow + baseflow + runoff) was determined for each watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Streamflow units are comparable to rainfall - millimeters of water per year. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project...
thumbnail
This dataset represents the average C3 grass fraction (a biogeographic index based on the ratio of C3 to C4 grass) for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Simulated mean C3 grass fraction was determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW 09-JV-11261900-003). The MC1...
thumbnail
This dataset represents the average maximum annual value of total vegetation carbon for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Mean maximum annual value of total vegetation carbon, in g m-2, was determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003). The MC1 model...
thumbnail
This dataset represents the average net primary production for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Mean net primary production (in g m-2 per yr), was determined for each HUC5 watershed by averaging values of original ~ 4 km raster data. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003). The...
thumbnail
This dataset represents the average maximum annual value of total vegetation carbon for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Mean maximum annual value of total vegetation carbon, in g m-2, was determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003). The MC1 model...
thumbnail
This dataset represents the historical mean number of fires per year burned per ~ 4 km pixel, averaged for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Historical mean number of fires per year per ~4 km pixel was averaged across each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, a nd wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003)....


    map background search result map search result map Simulated average historical streamflow (1971-2000) for OR and WA, USA Simulated historical C3 grass fraction (1971-2000) for OR and WA, USA Simulated historical live forest carbon (1971-2000) for OR and WA, USA Simulated historical maximum total vegetation carbon (1971-2000) for OR and WA, USA Simulated historical maximum total vegetation carbon (1971-2000) for OR and WA, USA Simulated historical mean number of fires per year (1971-2000 average per ~4 km pixel) for OR and WA, USA Simulated historical net primary production (1971-2000) for OR and WA, USA Simulated historical potential evaporation (1971-2000) for OR and WA, USA Simulated average historical streamflow (1971-2000) for OR and WA, USA Simulated historical mean number of fires per year (1971-2000 average per ~4 km pixel) for OR and WA, USA Simulated historical C3 grass fraction (1971-2000) for OR and WA, USA Simulated historical live forest carbon (1971-2000) for OR and WA, USA Simulated historical maximum total vegetation carbon (1971-2000) for OR and WA, USA Simulated historical maximum total vegetation carbon (1971-2000) for OR and WA, USA Simulated historical net primary production (1971-2000) for OR and WA, USA Simulated historical potential evaporation (1971-2000) for OR and WA, USA