Skip to main content
Advanced Search

Filters: Tags: earthquake hazard (X)

83 results (68ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
ShakeMap is a product of the USGS Earthquake Hazards Program in conjunction with the regional seismic networks. ShakeMaps provide near-real-time maps of ground motion and shaking intensity following significant earthquakes. These maps are used by federal, state, and local organizations, both public and private, for post-earthquake response and recovery, public and scientific information, as well as for preparedness exercises and disaster planning.
thumbnail
A scenario represents one realization of a potential future earthquake by assuming a particular magnitude, location, and fault-rupture geometry and estimating shaking using a variety of strategies. In planning and coordinating emergency response, utilities, local government, and other organizations are best served by conducting training exercises based on realistic earthquake situations—ones similar to those they are most likely to face. ShakeMap Scenario earthquakes can fill this role. They can also be used to examine exposure of structures, lifelines, utilities, and transportation corridors to specified potential earthquakes. A ShakeMap earthquake scenario is a predictive ShakeMap with an assumed magnitude and...
thumbnail
New active-source shallow seismic (shear-wave and acoustic-wave) measurements were obtained at 18 prioritized seismic monitoring station locations in the north San Francisco Bay area to measure site-specific ground motion amplification effects, soil depth, depth to bedrock (Z1.0 Vs=1 km/s), calculate site specific velocity-depth profiles and Vs30, and develop NEHRP site classifications for each location. This study was led by Principal Investigators Jamey Turner, Cooper Brossy, and Daniel O’Connell and field data were acquired by Glendon Adams and Lincoln Steele. Seismic monitoring sites that recorded high PGA values during the M6.0 Napa earthquake, proximal to higher population densities, and sites recommended...
thumbnail
The NEIC global earthquake bulletin is called the Preliminary Determination of Epicenters or PDE, and is one of many discrete products in the ANSS Comprehensive Catalog (ComCat). We use the word "Preliminary" for our final bulletin because the Bulletin of the International Seismological Centre is considered to be the final global archive of parametric earthquake data, in other words phase arrival (“pick”) times and amplitudes.
thumbnail
Here we present an inventory of remotely and field-observed landslides triggered by 2019-2020 Puerto Rico earthquake sequence. The inventory was mapped using pre- and post-event satellite imagery (PR_landslide_inventory_imagery.csv), an extensive collection of field observations (https://doi.org/10.5066/P96QNFMB) and using pre-earthquake lidar as guidance for mapping polygons with more precise locations and geometries (2015 - 2017 USGS Lidar DEM: Puerto Rico dataset). The inventory consists of a shapefile of 309 polygons (PR_landslide_inventory_pts.shp) outlining the source area and deposits together. It also includes a point inventory (PR_landslide_inventory_pts.shp) marking 170 individual displaced boulders that...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail. ##### This distribution includes models of three-dimensional slab geometry under...
thumbnail
New Zealand’s Alpine Fault (AF) ruptures quasi-periodically in large-magnitude earthquakes. Paleoseismological evidence suggests that about half of all recognized AF earthquakes terminated at the boundary between the Central and South Westland sections of the fault. There, fault geometry and the polarity of uplift change. The South Westland AF exhibits oblique-normal fault motion on a structure oriented 055/82SE that, for at least 35 km along strike, contains saponite-rich principal slip zone gouges. New hydrothermal friction experiments reveal that the saponite fault gouge is frictionally weak, exhibiting friction coefficients between =0.12 and =0.16 for a range of temperatures (T=25–210 C) and effective normal...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
The database contains uniformly processed ground motion intensity measurements (peak horizontal ground motions and 5-percent-damped pseudospectral accelerations for oscillator periods 0.1–10 s). The earthquake event set includes more than 3,800 M≥3 earthquakes in Oklahoma and Kansas from January 2009 to December 2016. Ground motion time series were collected out to 500 km. We also relocated the majority of the earthquake hypocenters using a multiple-event relocation algorithm to produce a set of near-uniformly processed hypocentral locations. Details about data processing are reported in the accompanying article. First posted - October 11, 2017 Revised - December 18, 2017, ver. 1.1
thumbnail
Compiled Vs30 measurements obtained by studies funded by the U.S. Geological Survey (USGS) and other governmental agencies. Thus far, there are 2,997 sites in the United States, along with metadata for each measurement from government-sponsored reports, Web sites, and scientific and engineering journals. Most of the data originated from publications directly reporting the work of field investigators. A small subset (less than 20 percent) of Vs30 values was previously compiled by the USGS and other research institutions. Whenever possible, Vs30 originating from these earlier compilations were crosschecked against published reports. Both downhole and surface-based Vs30 estimates are represented. Most of the VS30 data...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
We generated digital elevation models (DEMs) using pre- and post-event in-track stereo 0.5 m resolution panchromatic Worldview 1 and 2 images (©2019, DigitalGlobe) using the Surface Extraction from TIN-based Searchspace Minimization (SETSM) software [Noh and Howat, 2015] running on the University of Iowa Argon supercomputer (Table S1). The post-event DEMs exhibit along-track striping artifacts common to the Worldview 2 sensor. While de-striping tools, for example within NASAs Ames Stereo Pipeline [Shean et al., 2016], are commonly applied to resolve this issue, a de-striping correction has not been developed for this latitude. Noh, M.-J., and I. M. Howat (2015), Automated stereo-photogrammetric DEM generation...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
About 280 kilometers of multichannel (common-depth-point) seismic reflection profiles were obtained in the central Mississippi River Valley by Geophysical Service Inc. and Western Geophysical Company under contracts with the U.S. Geological Survey. The specific area of the profiles is southeastern Missouri, northeastern Arkansas, and northwestern Tennessee. Geologically, the area is located in the northern part of the Mississippi Embayment.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
The New Madrid Seismic Zone presents significant seismic hazard to the central and eastern United States. We mapped newly-identified coseismic ridge-spreading features, or sackungen, in the bluffs east of the Mississippi River in western Tennessee. We use this mapping dataset in an accompanying manuscript to show that sackungen form during earthquakes on the Reelfoot fault and may fail in preferred orientations. Ultimately, these data can be used to infer fault source and mechanism and improve the paleoseismic record used in hazard models.
thumbnail
We present high-resolution (10-cm pixel) digital surface models (DSMs) generated for the northern 16 km of the surface rupture associated with the 1983 Mw 6.9 Borah Peak earthquake. These DSMs were generated using Agisoft Photoscan (and Metashape) image-based modeling software and low-altitude aerial photographs acquired from unmanned aircraft systems and a tethered balloon. DSM files consist of GeoTIFFs with georeferencing information stored in the file headers.
thumbnail
This ScienceBase entry contains three seismic catalogs supporting and described by the manuscript - Koper, K. D., Pankow, K. L., Pechmann, J. C., Hale, J. M., Burlacu, R., Yeck, W. L., et al (2018). Afterslip Enhanced Aftershock Activity During the 2017 Earthquake Sequence Near Sulphur Peak, Idaho. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL078196. These are included in three separate catalog files: the University of Utah Seismograph Stations (UUSS) absolute locations, the MLOC relocations, and the GrowClust relocations. The absolute USGS locations are available from the USGS ComCat (https://earthquake.usgs.gov/data/comcat/).


map background search result map search result map Seismic Reflection Profiles in the Northern Mississippi Embayment A database of instrumentally recorded ground motion intensity measurements from induced earthquakes in Oklahoma and Kansas Slab2 - A Comprehensive Subduction Zone Geometry Model, Caribbean Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Hellenic Arc Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Pamir Region Slab2 - A Comprehensive Subduction Zone Geometry Model, South America Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sumatra-Java Region Data for Frictional Properties and 3-D Stress Analysis of the Southern Alpine Fault, New Zealand (2013) Earthquake Catalogs supporting manuscript "Afterslip Enhanced Aftershock Activity During the 2017 Earthquake Sequence Near Sulphur Peak, Idaho" Data Set S1 for "Coseismic Sackungen in the New Madrid Seismic Zone, USA" Digital Surface Models for the northern 16 km of the 1983 Borah Peak earthquake rupture, northern Lost River fault zone (Idaho, USA) 2016 Mw 6.0 Petermann Ranges earthquake, Australia: Pre- and post-earthquake digital elevation models Inventory of landslides triggered by the 2020 Puerto Rico earthquake sequence Data for Frictional Properties and 3-D Stress Analysis of the Southern Alpine Fault, New Zealand (2013) Digital Surface Models for the northern 16 km of the 1983 Borah Peak earthquake rupture, northern Lost River fault zone (Idaho, USA) Inventory of landslides triggered by the 2020 Puerto Rico earthquake sequence Seismic Reflection Profiles in the Northern Mississippi Embayment A database of instrumentally recorded ground motion intensity measurements from induced earthquakes in Oklahoma and Kansas 2016 Mw 6.0 Petermann Ranges earthquake, Australia: Pre- and post-earthquake digital elevation models Slab2 - A Comprehensive Subduction Zone Geometry Model, Pamir Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Hellenic Arc Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Caribbean Region Slab2 - A Comprehensive Subduction Zone Geometry Model, South America Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sumatra-Java Region